[1]
ZHANG Shiping, DENG Min, TANG Mingshu. Advance in research on damagement of Concrete due to freeze-thaw cycles. Journal of materials science and engineering, 2008, 26(6): 990-994.
Google Scholar
[2]
T.C. powers. A working hypothesis for further studies of frost resistance. ACI Journal, Proceedings. 1945, 41(3): 245-272.
Google Scholar
[3]
T.C. powers. Freezing effect in concrete, Durability of Concrete. American Concrete Institute SP-47, (1975).
Google Scholar
[4]
T.C. Powers, R.A. Helmuth. Theory of volume changes in hardened Portland cement paste during freezing. Proceedings of the Highway Research Board, 1953(32): 285-297.
Google Scholar
[5]
ZHANG Teng, JIANG Xiaoli, ZHANG Weiping, QU Wenjun. Durability of concrete structures. Shanghai: Shanghai scientific and technical publishers, (2003).
Google Scholar
[6]
Vesa Penttala. Surface and internal deterioration of concrete due to saline and non-saline freeze-thaw loads. Cement Concrete Research. 2006, (36): 921-928.
DOI: 10.1016/j.cemconres.2005.10.007
Google Scholar
[7]
G.G. Litvan. Phase transitions of adsorbates. Ⅲ: Heat effects and dimensional changes in nonequilibrium temperature cycles. Journal of Colloid and Interface Science, 1972 (38)75-83.
DOI: 10.1016/0021-9797(72)90221-4
Google Scholar
[8]
G.G. Litvan. Adsorption systems at temperatures below the freezing point of the adsorptive [J]. Advances in Colloid and Interface Science. 1978 (9): 253-302.
DOI: 10.1016/0001-8686(78)85001-5
Google Scholar
[9]
M.J. Setzer. Micro-Ice-Lens Formation in Porous Solid. Journal of Colloid and Interface Science 243, 2001: 193-201.
DOI: 10.1006/jcis.2001.7828
Google Scholar
[10]
Bernard Erlin, Bryant Mather. A new process by which cyclic freezing can damage concrete – the Erlin/mather effect a concept. Cement and Concrete Research, 2005(35): 1407-1411.
DOI: 10.1016/j.cemconres.2004.08.023
Google Scholar
[11]
LI Jinyu, CAO Jianguo, XU Wenyu. Stydy on the mechanism of concrete destruction under frost action. Journal of hydraulic engineering, 1999(1):41-49.
Google Scholar
[12]
ZHAO Tiejun. Permeability of concrete. Beijing: Science Press, (2006).
Google Scholar
[13]
Bjorn Johannesson. Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures. Cement and Concrete, (2009).
DOI: 10.1016/j.cemconcomp.2009.09.001
Google Scholar
[14]
Lahlou Dahamni, Amar Khenane, Salah Kaci. Behavior of the reinforced concrete at cryogenic temperatures. Cryogenics , 2007 (47): 517-525.
DOI: 10.1016/j.cryogenics.2007.07.001
Google Scholar
[15]
Malgorzata sliwinska-Bartkowiak, Grazyna Dudziak, Roman Gras, etal. Freezing behavior in porous glasses and MCM-41 [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, (187-188): 523-529.
DOI: 10.1016/s0927-7757(01)00637-9
Google Scholar
[16]
Henri Bader. Density of ice as a function of temperature and stress. U.S. Army Material Command, CRREL, Special Report 64.
Google Scholar
[18]
Josef P. Kaufmann. Experimental identification of ice formation in small concrete pores. Cement and Concrete Research, 2004 (34): 1421-1427.
DOI: 10.1016/j.cemconres.2004.01.022
Google Scholar