Authors: Chao Hua Jiang, T.J. McCarthy, D. Chen, Q.Q. Dong
Abstract: The bond and anti-abrasion performance of repair materials are the key factors for successful repair of hydraulic concrete. Acrylic acid emulsion (AAE) mortar, silica fume (SF) mortar, high strength (HS) mortar, polypropylene (PP) fiber mortar and basalt fiber (BF) mortar were prepared and their direct tensile bond strength, splitting tensile bond strength, abrasion resistance and SEM analysis of bond interface are studied in this paper. The results show that the highest direct tensile bond strength was recorded for fiber mortar. But compared to homogenous specimen’s tensile strength, AAE mortar showed the highest direct tensile bond strength. The anti-abrasion properties of repair mortars were tested with decreasing performance recorded in the following order: PP fiber mortar, SF mortar, BF mortar, HS mortar and AAE mortar. Compared with the HS mortar without fiber, the wear rate of PP fiber mortar was decreased by 29.2 % and the anti-abrasion strength was increased by 37.7%. This shows that adding fiber can greatly improve the anti-abrasion property. SEM analysis showed that addition of PP fiber and BF into repair mortar did not change the type of hydrates. The interface of AAE mortar was level and dense. The bond interface of SF mortar was uniform without big porosity. Addition of super plasticizer, the bond interface of HS mortar presented a large quantity of fibrous the CSH gel and less porosity which could improve the mortar bond effect effectively.
403
Authors: Jing Zhao, Ting Song
Abstract: The main problems of repair materials for concrete pavement are big shrinkage and weak bond etc. The rapid repair material discussed in this paper is concrete with compound early-strength admixture. Its compressive strength and flexural strength (1d) is up to 23.1MPa and 3.74MPa respectively, which meets open to traffic demand in one day. Repair materials mixed with alkali-proof glass fiber or polypropylene fiber mesh were studied. Flexural strength and interfacial bond strength increased, shrinkage value reduced when fiber was blended. The results indicate that there is a strong linear correlation between splitting strength of repair material and bond strength.
870
Authors: Jee Sang Kim, Jong Ho Park
Abstract: Researches on Ultra High Performance Concrete (UHPC) have been conducted worldwide owing to its outstanding durability and strength performances compared to normal concrete. This paper experimentally investigates the bond properties of reinforcements embedded in UHPC using direct pull-out tests. The specimens were prepared for various compressive strength levels of 120, 150, and 180MPa, diameters of reinforcements of 13, 16, 19, 22 and 25mm, cover to bar diameter ratios and bonded lengths. The influences of each test variable on bond properties are examined and may be a useful data for design and analysis of UHPC structures.
323
Authors: Marianovella Leone, Valeria Rizzo, Francesco Micelli, Maria Antonietta Aiello
Abstract: External bonded reinforcements (EBR), made by fibrous meshes embedded in a cementitious/hydraulic lime mortar, are getting a great deal of attention, mostly for strengthening, retrofitting and repair existing structures. In this context, the interest versus the FRCM (Fiber Reinforced Cementitious Matrix) is growing. The mechanical performance of these mortar-based reinforcements is not well known at the date and it needs to be investigated in terms of bond and tensile strength, strain and stiffness, in relation to the type of both substrate and fibers. The present work reports the results of an experimental study, still in progress, on different pre-cured GFRP grids embedded in inorganic matrices and applied on clay brick masonry. First, the mechanical properties of both pre-cured GFRP grid and GFRCM reinforcements were obtained through tensile tests. Then, the experimental investigation on bond behavior was carried out by direct shear bond test. The test results were collected and processed to evaluate bond strength, failure mode, load-slip relationship.
542