[1]
Whitney J M. Structural analysis of laminated anisotropic plates[M]. Lancaster: Technomic Publishing Company, (1987).
Google Scholar
[2]
Jones R M. Mechanics of composite materials[M]. Seconded. Philadelphia. PA: Taylor & Francis, (1999).
Google Scholar
[3]
Reissner E. A consistment treatment of transverse shear deformations in laminated anisotropic plates[J]. AIAA, 1972, 10(5): 716-718.
DOI: 10.2514/3.50194
Google Scholar
[4]
Reddy J N. A simple higher-order theory for laminated composite shells[J]. Trans ASME, Appl Mech, 1984, 51: 745-752.
Google Scholar
[5]
Reddy J N. Exact solution of moderately thick laminated shells[J]. Trans ASCE, Engrg Mech, 1984, 10(5): 794-809.
DOI: 10.1061/(asce)0733-9399(1984)110:5(794)
Google Scholar
[6]
Noor A K, Buton W S. Stress and free vibration analysis of multilayered composite plates[J]. Composite Structures, 1989, 11: 183-204.
DOI: 10.1016/0263-8223(89)90058-5
Google Scholar
[7]
Chow TS. On the propagation of fxeural waves in an orthotropic laminated pbates and its response to an impulsive load[J].J. Comp. Mater. , 1971, (5): 306-319.
DOI: 10.1177/002199837100500302
Google Scholar
[8]
WANG ASD. Chow PC and Rose, J . L.: Strongly coupled stress waves in heterogenous plats[J]. Am INST Aeronart. Astronaut. Jnl, 1972. (10), 1088-1090.
Google Scholar
[9]
Reddy J. N: On the solutions to forced motions of rectangular composite plates[J]J. Appl. Mech. , 1982, (49): 403-408.
DOI: 10.1115/1.3162101
Google Scholar
[10]
Mallikarinna and Kant.T.: Dynamics of laminated composite plates with a higher-crder theoryand finite element discretization[J]. Sound Vidr., 1988, (126): 463-475.
DOI: 10.1016/0022-460x(88)90224-6
Google Scholar
[11]
Kang T., Ravichandran, R. V. Pandy. B.N. and Mallikarjuna: Finitc element analysis of isotropic and fibre reinforced compsiteplates using a higher-order theory[J]. Comp. Strucl. 1988. (9). 319-342.
DOI: 10.1016/0263-8223(88)90051-7
Google Scholar
[12]
NATHY, MAHRENHOLTZO. Nonlinear dynamic response of a doubly curred shallow shell on an elastic foundation[J]. J Sound &Vibration, 1987, 112(1): 53-61.
DOI: 10.1016/s0022-460x(87)80093-7
Google Scholar
[13]
Shen Peng cheng. Analysis of the structure of the spline finite element method [M]. Beijing: Hydraulic power press, (1992).
Google Scholar
[14]
Xu Ci da. Solid mechanics weighted residual method [M]. Shanghai: Tongji university press, (1992).
Google Scholar
[15]
Bert, C.W. Chen,T. L. C: Effect of shear deformation on vibration of antisymmetrc angle-plylaminated rectangul plates[J]. Int. J. Solide Structuresl. 1978. (14): 465-473.
Google Scholar
[16]
Xu Bo hou. Based on a new layer and the finite element analysis model of version [J]. Journal of composite materials, 1990, 7(2): 99-109.
Google Scholar
[17]
Shen Hong yu. Laminated composite material plate of frequency analysis [J]. Journal of composite materials, 1986. 3(2): 64-73.
Google Scholar
[18]
Reddy J . N: Free vibration of antisymmetric angle-ply laminatd plates including transverse shear deformation by the finie element method[J]. Journal Sound and Vi-bration. 1979, 66(4): 565-576.
DOI: 10.1016/0022-460x(79)90700-4
Google Scholar
[19]
Shi Zhong ci. The spline finite element [J]. Mathematic calculation, 1979(1): 50~72.
Google Scholar