Effect of Ruthenium Metal Precursors Supported on Bentonite in Hydrogenolysis Glycerol

Article Preview

Abstract:

Various ruthenium precursors (Ru= RuCl3, Ru2 = Ru(acac)3, Ru3 = Ru3(CO)12) supported on bentonite were prepared by conventional impregnation method. Their catalytic performances were evaluated in the hydrogenolysis of glycerol using autoclave Parr reactor under mild reaction conditions of 150°C, hydrogen pressure 30 bar for 7 hours. Among the studied catalyst, 5% Ru/bentonite catalyst prepared from Ru and Ru3 precursor exhibited higher activity which are 79.6% and 72.5% respectively. In contrast, Ru2/bentonite prepared from Ru(acac)3 precusor gave lowest activity (41.8%). In term of selectivity to 1,2-propanediol, Ru2 and Ru3 precusor gave higher selectivity (67.0% and 66.9%) compared to Ru precursor (50.6%). These results indicated that metal precursor plays an important role on activity and selectivity of the catalyst in hydrogenolysis reaction. The catalysts were characterized by XRD, XPS, BET, FESEM-EDX and TEM, and the reasons for the high performances of the catalyst were also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-139

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Zhiwei, C. Fang, K. Haixiao, C. Jing: Applied Catalysis A, (2009).

Google Scholar

[2] E.S. Vasiliadou, E. Heracleous, I.A. Vasalos, A. ALemonidou. Applied Catalysis B: Environment vol. 92 (2009), pp.90-99.

Google Scholar

[3] F. Jian, F. Haiyan, W. Jinbo, L. Ruixiang, C. Hua, L Xianjun. Catalysis Communation vol. 9( 2007), pp.1458-1464.

Google Scholar

[4] J. Tao, Z. Yinxi, L. Shuguang, L. Huizhen and H. Buxing. Green Chemistry, vol. 11 (2009), pp.1000-1006.

Google Scholar

[5] C. Julien, D. Laurent, G. Pierre, M. Philippe, P. Catherine and R. Cecille. Green Chemistry, vol. 6 (2004), pp.359-361.

Google Scholar

[6] P. Erin, J. D. Robert. J of Catalysis, vol. 249( 2007), pp.328-337.

Google Scholar

[7] M. Balaraju, V. Rekha, P.S. Sai Prasad, B.L. A Prabhavanthi Deva, R.B. N Prasad, N. Lingaiah. Applied Catalysis A: General (2008), pp.82-87.

Google Scholar

[8] M. Lan, H. Dehua. Top Catalysis. vol. 52 (2009), pp.834-844.

Google Scholar

[9] M. Tomohisa, K. Yohei, K. Kimio, T. Keiichi. J of Catalysis, vol 240 (2006), pp.213-221.

Google Scholar

[10] G. Liyuan , M. Jingbo , G. Xinwen ,Z. Shuquang . Applied Catalyst A: General : (2009), pp.93-98.

Google Scholar

[11] H. Long, Z. Yulei, Z. Hongyan, D. Guaqiang, L. Yongwang. Catalysis Letter. vol. 131 (2009), pp.312-320.

Google Scholar

[12] M. Adriana, I. Gheorghe, G. Costinela-laura, C. Claudia, O. Spiridon. Catalysis Letter. vol. 97( 2009), pp.315-320.

Google Scholar

[13] M.A. Dasari, P.P. Kiatsimkul, W.R. Sutterlin , G.J. Suppes. Applied Catalyst A, vol. 281 (2005), pp.225-231.

Google Scholar

[14] T. Miyazawa, S. Koso, K. Kunimori, K. Tomishige. Applied Catalysis A: General, vol. 318 , (2007), pp.244-251.

DOI: 10.1016/j.apcata.2006.11.006

Google Scholar

[15] F.M. John, F.S. William, E.S. Peter, D.B. Kenneth. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division. (1992).

Google Scholar

[16] W. Yu, J. Zhao, H. Ma, H. Miao, Q. Song, J. Xu. Applied Catalyst A: General, vol 383 (2010), pp.73-78.

Google Scholar