La-Doped CaCu3Ti4O12 Ceramics Sintered in Argon Environment

Article Preview

Abstract:

The properties of undoped and La-doped CaCu3Ti4O12 ceramics synthesized via solid state reaction under argon environment had been studied. It was found that La-doped CCTOs gave higher dielectric constant and lower dielectric loss than undoped CCTO. X-ray diffraction (XRD) analysis indicated that all of the sintered samples have single-phase cubic structure (space group ). A minor shifted was observed in the peak positions for La-doped samples, which are attributed to the lattice expansion. The lattice parameter obtained from XRD analysis is 7.348 Å for undoped CCTO and increases to 7.348 – 7.377 Å for La-doped CCTOs. The results proven that La ions have effectively substituted into the Ca site of CCTO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-172

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Subramanian, L. Dong, B.A. Resiner and A.W. Sleight: J. Solid Stat. Chem. Vol. 151 (2000), p.323.

Google Scholar

[2] A.P. Ramirez, M.A. Subramanian, M. Garbel, G. Blumberg, D. Li, T. Vogt and S.M. Shapiro: Solid State Commun. Vol. 115 (2000), p.217.

Google Scholar

[3] S. Ezhilvalavan, and T.Y. Tseng: Mater. Chemist. Phys. Vol. 65 (2000), p.227.

Google Scholar

[4] L.C. Kretly, A.F.L. Almeida, R.S. de Oliveira, J.M. Sasaki and A.S.B. Sombra: Microwave Optical Technol. Lett. Vol. 39 (2005), p.145.

Google Scholar

[5] L.C. Kretly, A.F.L. Almeida, P.B.A. Fechine, R.S. de Oliveira and A.S.B. Sombra: J. Mater. Sci.: Mater. Electron. Vol. 15 (2004), p.657.

Google Scholar

[6] J. Liu, C.G. Duan and W.N. Mei: J. Appl. Phys. Vol. 98 (2005), p.093703.

Google Scholar

[7] S.D. Hutagalung, L.Y. Ooi, Z.A. Ahmad, J. Alloys Comp. Vol. 476 (2009), p.477.

Google Scholar

[8] V.T. Zaspalis and M. Kolenbrander: J. Mater. Process. Technol. Vol. 205 (2008), p.297.

Google Scholar

[9] M.A. Sulaiman, S.D. Hutagalung, M.F. Ain, Z.A. Ahmad, J. Alloys Comp. Vol. 493 (2010), p.486.

Google Scholar

[10] S.D. Hutagalung, M.I.M. Ibrahim, Z.A. Ahmad, Mater. Chem. Phys. Vol. 112 (2008), p.83.

Google Scholar

[11] R.D. Shannon and C.T. Prewitt: Acta Crystallogr. B Vol. 26 (1970), p.1046.

Google Scholar

[12] T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi and Y. Takita: J. Electrochem. Soc. Vol. 147 (2000), p.1332–1337.

Google Scholar

[13] C. M. Wang, K.S. Kao, S.Y. Lin, Y.C. Chen and S.C. Weng: J. Phys. Chem. Solids Vol. 69 (2008), p.608.

Google Scholar

[14] K.C. Kao: Dielectric Phenomena in Solids, Elsevier Academic Press, London, (2004).

Google Scholar

[15] S. Guillemet-Fritsch, T. Lebey, M. Boulos and B. Durand: J. Eur. Ceram. Soc. Vol. 26 (2006), p.1245.

Google Scholar

[16] S. Kwon, C.C. Huang, E.A. Patterson, D.P. Cann, E.F. Alberta, W.S. Hackenberger and D. P. Cann: Materi. Lett. Vol. 62 (2008), p.633.

Google Scholar

[17] J.J. Mohamed, S.D. Hutagalung, M.F. Ain, K. Deraman and Z.A. Ahmad: Mater. Lett. Vol. 61 (2007), p.1835.

Google Scholar

[18] S.F. Shao, J.L. Zhang, P. Zheng and C.L. Wang: Sol. Stat. Commun. Vol. 142 (2007), p.281.

Google Scholar

[19] K.M. Kim, S.J. Kim, J.H. Lee and D.Y. Kim: J. Eur. Ceram. Soc. Vol. 27 (2007), p.3991.

Google Scholar

[20] I.P. Raevski, S.A. Prosandeyev, A.S. Bogatin, M.A. Malitskaya and L. Jastrabik: J. Appl. Phys. Vol. 93 (2003), p.4130.

Google Scholar

[21] K.D. Mandal, A.K. Rai, D. Kumar and O. Parkash: J. Alloys Comp. Vol. 478 (2009), p.771.

Google Scholar

[22] S.Y. Lee and T.Y. Tseng: Appl. Phys. Lett. Vol. 80 (2002), p.1797.

Google Scholar

[23] S. Jin, H. Xia and Y. Zhang: Ceram. Intern. Vol. 35 (2009), p.309.

Google Scholar

[24] P.C. Joshi and S. B. Desu: J. Appl. Phys. Vol. 80 (1996), p.2349.

Google Scholar