Formation and Mechanistic Study of Self-Ordering ZrO2 Nanotubes by Anodic Oxidation

Article Preview

Abstract:

Among all of the one dimensional nanostructures other than titania (TiO2) and carbon, zirconia (ZrO2) have started to gain interest due to its potential in catalytic and energy applications. ZrO2 nanotubes arrays have been prepared using electrochemical anodizing method of Zr foil in fluorine containing glycerol electrolyte. The morphology and structure of the ZrO2 nanotubes are strongly controlled by the applied electrochemical condition especially voltage. Nanotubes with diameter of 30 to 60 nm has been produced by controlling the anodization voltage from 10 to 40 V. The ZrO2 nanotubes formed in this method is partially crystalline even without the heat treatment. The wall thickness is ~10 nm. The self-aligned nanotubes produced by this method could be used for phocatalytic application. The degradation of methylene orange under UV light was successful when ZrO2 nanotubes made in 30 V is used.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-177

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, M. Aucouturier, Surface and Interface Anal. Vol. 27 (1999) pp.629-637.

DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Google Scholar

[2] J. M. Macak, H. Tsuchiya, P. Schmuki, Ange. Chemie - International Edition Vol. 44 (2005) pp.2100-2102.

Google Scholar

[3] H. Tsuchiya, J. M. Macak, A. Ghicov, L. Taveira, P. Schmuki, Corrosion Science Vol. 47 (2005) pp.3324-3335.

DOI: 10.1016/j.corsci.2005.05.041

Google Scholar

[4] F. Marquez, C. Morant, K.R. Pirota, A. Borras, J. M Sanz, E. Elizalde, Nano Today Vol. 4 (2009) pp.21-26.

Google Scholar

[5] M. N. Tahir, L. Gorgishvili, J. Li, T. Gorelik, U. Klob, L. Nasdala, W. Tremel, Solid State Science Vol. 9 (2007) pp.1105-1109.

DOI: 10.1016/j.solidstatesciences.2007.07.033

Google Scholar

[6] Z. Lockman, S. Sreekantan, S. Ismail, L. Schmidt-Mende, J. L. MacManus-Driscoll, J. Alloys and Compd. In Press, Accepted Manuscript.

Google Scholar

[7] S. Sreekantan, Z. Lockman, R. Hazan, M. Tasbihi, L. K. Tong, A. R. Mohamed, J. Alloys and Compods 485 (2009) pp.478-483.

DOI: 10.1016/j.jallcom.2009.05.152

Google Scholar

[8] Z Lockman S. Ismail, S. Sreekantan, L. Schmidt-Mende, J. L. MacManus-Driscoll, Nanotech. 21 055601.

Google Scholar

[9] R. Xu, J. Zhao, X. Wang, L. Guo, Y. Li, Rare Metal Materials and Engineering Vol. 38 (2009) pp.1084-1086.

Google Scholar

[10] J. Zhao, R. Xu, X. Wang, Y. Li, Corr. Sci. Vol. 50 (2008) pp.1593-1597.

Google Scholar

[11] H. Tsuchiya, P. Schmuki, Electrochem. Commun. Vol. 6 (2004) pp.1131-1134.

Google Scholar

[12] J. L. Zhao, X. X. Wang, R. Q. Xu, F. B. Meng, L. M. Guo, Y. X. Li, Mater. Lett. Vol. 62 (2008) pp.4428-4430.

Google Scholar

[13] Y. Cong, B. Li, S. Yue, D. Fan, X. J. Wang, J. of Phy. l Chem. y C, 113 (2009) pp.13974-13978.

Google Scholar