Zinc Oxide Thin Films Grown by RF Magnetron Sputtering on Nanostructure Al Thin Layer/Glass and Glass Substrates

Article Preview

Abstract:

ZnO films with random and highly (002)-preferred orientation were deposited on nanostructured Al (n-Al) /glass and glass substrates at room temperature by RF magnetron sputtering method, respectively. According to I (002)/I (100) ≈I annealed (002)/I annealed (100) ≈1.1 (on n-Al) and 2I annealed (002) /I (002) (on n-Al) ≈ I annealed (002) /I (002) (on glass) ≈3.1, the rough n-Al surface is suitable for the growth of a-axis orientation, and the appearance of the (100) peak plays a major role in decreasing the c-axis orientation. The average optical transmission of the film on n-Al layer increased significantly after annealing. At the same time, the growth mode and E g of ZnO films were discussed. On n-Al layer/glass substrate, it is not easy for the growth interface to form the smooth surface during the deposition process and Stranski Krstanov plays a primary role on the deposition of the films. Due to the significant increase of the interplanar spacing d (101), the band gaps for as-grown and annealed films grown on n-Al decreased, comparing with that of the film deposited on glass substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

398-403

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Ozgur, Y.I. Alivov, C. Liu, et al.: J. Appl. Phys. Vol. 98 (2005), p.301.

Google Scholar

[2] L. S. Mende, J.L. M.M. Driscoll: Mater. Today. Vol. 10 (2007), p.40.

Google Scholar

[3] I. Sayago, M. Aleixandre, L. Ares, et al.: Appl. Surf. Sci. Vol. 245 (2005), p.273.

Google Scholar

[4] F.K. Shan, G.X. Liu, W.J. Lee, et al.: J. Cryst. Growth. Vol. 277 (2005), p.284.

Google Scholar

[5] Y.Y. Liu, Y.L. Zang, G.X. Wei, et al.: Materials Letters. Vol. 63(2009), p.2597.

Google Scholar

[6] C. Oliveira, L. Rebouta, T. de Lacerda-Aroso, et al.: Thin Solid Films. Vol. 517(2009), p.6290.

Google Scholar

[7] S. Fernandez, A.M. Steele, J.J. Gandia, et al.: Thin Solid Films. Vol. 517(2009), p.3152.

Google Scholar

[8] S. B. Amor, M. Jacquet, P. Fioux , et al.: Materials Chemistry and Physics. Vol. 119 (2010), p.158.

Google Scholar

[9] Y. S. Lim, J. S. Jeong , J. Bang , et al.: Solid State Communications. Vol. 150 (2010), p.428.

Google Scholar

[10] M. Fujita, N. Kawamoto, M. Sasajima, et al.: J. Vac. Sci. Technol. B Vol. 22(2004), p.1484.

Google Scholar

[11] Y. Deesirapipat, M. Fujita, M. Sasajima, et al.: Japan J. Appl. Phys. Vol. 44 (2005), p.5150.

Google Scholar

[12] Z. Fu, B. Lin, G. Liao, et al.: J Cryst. Growth. Vol. 193(1998), p.316.

Google Scholar

[13] Y. Yoshino, K. Inoue, M. Takeuchi, et al.: Vacuum. Vol. 59 (2000), p.403.

Google Scholar

[14] Y. Yoshino, K. Inoue, M. Takeuchi, et al.: Vacuum. Vol. 51 (1998), p.601.

Google Scholar

[15] J. B. Lee, S. H. Kwak, H. J. Kim: Thin Solid Films. Vol. 423 (2003), p.262.

Google Scholar

[16] W. T. Lim, C. H. Lee: Thin Solid Films. Vol. 353 (1999), p.12.

Google Scholar

[17] K.H. Yoon, J.W. Choi, D.H. Lee: Thin Solid Films. Vol. 302 (1997), p.116.

Google Scholar

[18] X. Jiang, C. L. Jia, B. Szyszka: Appl. Phys. Lett. Vol. 80 (2002), p.3090.

Google Scholar

[19] American Standard for Testing of Materials (ASTM) 36-1451.

Google Scholar

[20] V. Gupta, A. Mansingh: J. Appl. Phys. Vol. 80 (1996), p.1063.

Google Scholar

[21] J. Mass, P. Bhattacharya, R.S. Katiyar: Muter. Sci. Eng. B, Vol. 103 (2003), p.9.

Google Scholar

[22] R.J. Voorhoeve: J. Appl. Phys. Vol. 43(1972), p.4876.

Google Scholar

[23] R. Ghosh, D. Basak, S. Fujihara: J. Appl. Phys. Vol. 96 (2004), p.2689.

Google Scholar

[24] S. Maniv, W.D. Westwood, E. Colomboni: J. Vac. Sci. Technol. Vol. 20 (1982), p.162.

Google Scholar