Optimization of Sintering Temperature and Doping Level of Cr2O3 in ZnO-Pr6O11-Based Varistor Ceramics

Article Preview

Abstract:

The electrical properties of ZnO-Pr6O11-based varistors, which composed of (98.5-x)mol% ZnO +0.5mol% Pr6O11 +1.0mol% Co3O4 +xmol% Cr2O3 (x=0.0, 0.25, 0.5, 1.0, 2.0), were investigated as a function of sintering temperature in the range of 1250-1400°C for 2 h. At the same sintering temperature, the nonlinear exponents increased with the increase of Cr2O3 doping amount no more than 0.5mol%, but decreased with more Cr2O3 doped. With the same doping level of Cr2O3, the samples' varistor voltage decreased with the sintering temperature increased; and the samples' nonlinear exponents increased first with the sintering temperature increased to 1300 °C, but decreased when the temperature increased further. Conclusively, the electrical properties of ZnO-Pr6O11-Co3O4- Cr2O3 varistors were strongly affected by the sintering temperature and the doping level of Cr2O3, and the samples, doped with 0.5 mol% Cr2O3 and sintered at 1300 °C, exhibited the optimum nonlinear performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

382-385

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.K. Gupta: J. Am. Ceram. Soc. Vol. 73 (1990), p.1817.

Google Scholar

[2] S. Fujitsu, H. Toyoda and H. Yanagida: J. Am. Ceram. Soc. Vol. 70 (1987), p. C71.

Google Scholar

[3] D.R. Clarke: J. Am. Ceram. Soc. Vol. 82 (1999), p.485.

Google Scholar

[4] L. M. Levinson and H. R. Philipp: Am. Ceram. Soc. Bull. Vol. 65 (1986), p.639.

Google Scholar

[5] Y.S. Lee and T.Y. Tseng: J. Am. Ceram. Soc. Vol. 75 (1992), p.1636.

Google Scholar

[6] H. Feng, Z.J. Peng, X.L. Fu, et al.: J. Alloys compd. Vol. 497 (2010), p.304.

Google Scholar

[7] C.W. Nahm: Mater. Sci. Eng. B Vol. 133 (2006), p.91.

Google Scholar

[8] C.W. Nahm: J. Mater. Sci. Vol. 16 (2005), p.345.

Google Scholar

[9] C.W. Nahm: Mater. Lett. Vol. 58 (2004), p.2252.

Google Scholar

[10] C.W. Nahm, J.A. Park, M.J. Kim, et al.: J. Mater. Sci. Vol. 39 (2004), p.307.

Google Scholar

[11] C.W. Nahm, B.C. Shin and B.H. Min: Mater. Chem. Phys. Vol. 82 (2001), p.157.

Google Scholar

[12] C.W. Nahm: J. Eur. Ceram. Soc. Vol. 21 (2001), p.545.

Google Scholar

[13] C.W. Nahm, C.H. Park and H.S. Yoon: J. Mater. Sci. Lett. Vol. 19 (2000), p.271.

Google Scholar

[14] B.S. Skidan and M.M. M'int: Glass Ceram. Vol. 64 (2007), p.31.

Google Scholar

[15] C.W. Nahm: Mater. Lett. Vol. 56 (2002), p.379.

Google Scholar