Detecting the Efficiency of Cathodic Protection in Reinforced Concrete by Use of Galvanostatic Pulse Technique

Article Preview

Abstract:

The galvanostatic pulse technique has been applied in detecting the efficiency of cathodic protection in reinforced concrete based on the investigation on the response of galvanostatic pulse to the corrosion state of steel and perturbation magnitude of signal. Two data analysis methods were introduced to determine the corrosion rate. It is shown that the selection of perturbation magnitude of signal to be applied depends strongly on the corrosion state of steel. Too small current makes it difficult to separate the potential signal from background noise, whereas higher current results in intensive polarization. Thus, neither of two is beneficial for the data processing. The corrosion rate values obtained from chronopotentiometry method are on the low side during cathodic protection monitored by higher perturbation signal and correction of data employing polarization conversion method is suggested.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

584-589

Citation:

Online since:

December 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Bertolini, F. Bolzoni, A. Cigada, et al.: Corros. Sci. Vol. 35 (1993), p.1633.

Google Scholar

[2] P. Pedeferri: Constr. Build. Mater. Vol. 10 (1996), p.391.

Google Scholar

[3] G.K. Glass, A.M. Hassanein and N.R. Buenfeld: Corros. Sci. Vol. 39 (1997), p.1451.

Google Scholar

[4] L. Bertolini, F. Bolzoni, P. Pedeferri, et al.: J. Appl. Electrochem. Vol. 28 (1998), p.1321.

Google Scholar

[5] G.K. Glass, A.M. Hassanein and N. R. Buenfeld: Corros. Sci. Vol. 43 (2001), p.1111.

Google Scholar

[6] J. Mietz and B. Isecke: Constr. Build. Mater. Vol. 10 (1996), p.367.

Google Scholar

[7] D.W. Law, S.G. Millard and J.H. Bungey: NDT & E Int. Vol. 33 (2000), p.15.

Google Scholar

[8] G.K. Glass, C.L. Page, N.R. Short, et al.: Corros. Sci. Vol. 35 (1993), p.1585.

Google Scholar

[9] J.A. González, A. Cobo, M.N. González, et al.: Corros. Sci. Vol. 43 (2001), p.611.

Google Scholar

[10] N. Birbilis, K.M. Nairn and M. Forsyth: Corros. Sci. Vol. 45 (2003), p.1895.

Google Scholar

[11] N. Birbilis, K.M. Nairn and M. Forsyth: Electrochim. Acta. Vol. 49 (2004), p.4331.

Google Scholar

[12] S. Sathiyanarayanan, P. Natarajan, K. Saravanan, et al.: Cem. Concr. Compo. Vol. 28 (2006), p.630.

Google Scholar

[13] G.K. Glass, C.L. Page, N.R. Short, et al.: Corros. Sci. Vol. 39 (1997), p.1657.

Google Scholar

[14] C.N. Cao: Principle of Corrosion Electrochemistry (Chemical Industry Press, Beijing, China, 2004).

Google Scholar

[15] J. Xu and W. Yao: Constr. Build. Mater. Vol. 23 (2009), p.2220.

Google Scholar

[16] ASTM C 876-95. Standard test method for half-cell potentials of uncoated reinforcing steel in concrete, (1999).

Google Scholar

[17] M. Stern and A.L. Geary: J. Electrochem. Soc. Vol. 104 (1957), p.56.

Google Scholar