Mechanism of Polymerization Reaction during the Solidification of Meta-Kaolin Based Mineral Polymer

Article Preview

Abstract:

Products of mineral polymer were prepared from meta-kaolin in this research. The mechanism of polymerization was deduced from the analytical data of XRD, IR, SEM and MAS-NMR. Several stages were produced during the solidification of meta-kaolin-based mineral polymer, that is, firstly, the Si-O-Si, Al-O-Si bonds of the meta-kaolin were broken in the high molar alkaline solution; Parallel to this process, complexes and polymerized species (-Si-O-Na, Al(OH)4-, Al(OH)52-, Al(OH)63-) formed; secondly, aluminosilicate zeolite precursors or precipitates formed; finally, by dehydration, the precursors turned into the non-crystaline phase, in which Q4(2Al) were the main forms of Si element, and tetrahedral aluminum were the main form of Al element in the mineral polymer products cured for 28 days. The experimental results provided a good basis for understanding the formation of mineral polymer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

628-635

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Cioffi, L. Maffucci, L. santoro: Resources, Conservation and Recycling. Vol. 40 (2003), p.27.

Google Scholar

[2] J. Fernandez, E.E. Lachowski, A. Palomo, et al.: Cement Conc. Compo. Vol. 26 (2004), p.1001.

Google Scholar

[3] A. Palomo, S. Alonso, A.F. Jimenez: J. Am. Cerm. Soc. Vol. 87 (2004), p.1141.

Google Scholar

[4] N. Yimiao, M. Hongwen, Y. Jing, et al.: GeoScience Vol. 20 (2006), p.340.

Google Scholar

[5] M. Hongwen, Y. Jing, R. Yufeng, et al.: Earth Science Frontiers Vol. 9 (2002), p.397.

Google Scholar

[6] S. Wei., Z. Yunsheng, L. Wei, et al,: Cement and Concrete Research. Vol. 34 (2004), p.935.

Google Scholar

[7] J. Davidovits: Mineral polymer'88, 1st European Conferenceon Soft Mineralurge. Compiegne, France, 1988, 1: 25-48.

Google Scholar

[8] C. Deguang, S. Dagen, Y. Zhanyin, et al.: Acta Miner. Sinica Vol. 4 (2004), p.366.

Google Scholar

[9] F.F. Valeria, J.D. Barbosa, K. Mackenzie, et al.: Inter. J. Inorg. Mater. Vol. 2 (2000), p.309.

Google Scholar

[10] M.L. Granizo, V.M.T. Blanco, A. Palomo: J. Mater. Sci. Vol. 35 (2000), p.6309.

Google Scholar

[11] W.K.W. Lee, J.S.J. Van Deventer" Colloids and Surfaces A Vol. 211 (2002), p.49.

Google Scholar

[12] A.F. Jimenez, A. Polomo, M. Criado: Cement and Concrete Research Vol. 35 (2005), p.1204.

Google Scholar

[13] A. Polomo, M.W. Grutzeck, M.T. Blanco: Cement and Concrete Research Vol. 29 (1999), p.1323.

Google Scholar

[14] Y. Xiao, A.C. Lasaga: Geochimi. Cosmochim. Acta Vol. 58 (1994), p.5379.

Google Scholar

[15] J.L. Devidal, J.L. Schott, J.L. Dandurand: Geochim Cosmochim Acta Vol. 61 (1997), p.5165.

Google Scholar

[16] L. Guihua, L. Xiaobin, Z. Qiusheng, et al,: Light Metal Vol. 6 (1998), p.13.

Google Scholar

[17] M. Hongwen, F. Wuwei, M. Shiding, et al.: Science in China D Vol. 35 (2005), p.420.

Google Scholar