Preparation and Magnetic Properties of Carbon Encapsulated Fe-Cu Alloy Nanoparticles

Article Preview

Abstract:

Carbon encapsulated Fe-Cu alloys nanoparticles were synthesized by using ferric nitrate, copper nitrate as metal sources and using sucrose as carbon source. The synthesis process involved a step of hydrazine hydrate reduction in alcohol solution and a step of annealing carbonization. The as-prepared samples were characterized by X-ray diffraction technique, X-ray energy dispersion spectrograph, trans- mission electron microscopy and Raman spectroscopy. The results showed the sample was core / shell structure, the metalic core was crystalline FeCu4 alloy, the shell was amorphous carbon, and the average particle size was about 51nm. The magnetic measurement by using a vibrating sample magnetometer revealed that the sample has ultra-soft magnetic property with the saturation magnetization Ms of 13.01 emu/g, residual magnetization Mr of 0.37 emu/g and coercive forces Hc of 54.43 Oe at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

673-676

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.R. Gong, L.T. Kong, B.X. Liu: Physical Review B Vol. 69 (2004), p.054203.

Google Scholar

[2] J. Eckert, J.C. Holzer, C.E. Krill-III, W.L. Johnson: J. Appl. Phys. Vol. 73 (1993), p.2794.

Google Scholar

[3] R.D. Shull, J.P. Cline, I. Baker, F. Liu: J. Appl. Phys. Vol. 79 (1996), p.6028.

Google Scholar

[4] N. Duxin, N. Brun, C. Colliex, M.P. Pileni: Langmuir Vol. 14 (1998), p. (1984).

Google Scholar

[5] A. Orecchini, F. Sacchetti, C. Petrillo, et al.: J. Alloys and Compounds Vol. 424 (2006), p.27.

Google Scholar

[6] S. Takahashi, A. Kubota, S. Kobayashi, Y. Kamada, H. Kikuchi, K. Ara: Journal of Materials Processing Technology Vol. 181 (2007), p.199.

Google Scholar

[7] O.C. Carneiro, P.E. Anderson, N.M. Rodriguez, R.T.K. Baker: J. Phys. Chem. B Vol. 108 (2004), p.13307.

Google Scholar

[8] E. Huttunen-Saarivirta: Journal of Alloys and Compounds Vol. 363 (2004), p.154.

Google Scholar

[9] Y. Ueda, S. Ikeda, Y. Mori, H. Zaman: Materials Science and Engineering A Vol. 217-218 (1996), p.371.

Google Scholar

[10] R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoney: Science Vol. 259 (1993), p.346.

Google Scholar

[11] M. Bystrzejewski, H. Lange, A. Huczko, H.I. Elim, W. Ji: Chem. Phy. Lett. Vol. 444 (2007), p.113.

Google Scholar

[12] H. Kakisawa, K. Minagawa, K. Halada, M. Otaguchi, T. Kimura: Materials Letters Vol. 57 (2003), p. (1955).

DOI: 10.1016/s0167-577x(02)01111-4

Google Scholar

[13] N. Duxin, M.P. Pileni, W. Wernsdorfer, B. Barbara, A. Benoit, D. Mailly: Langmuir Vol. 16 (2000), p.11.

DOI: 10.1021/la9810049

Google Scholar

[14] N. Hayashi, T. Moriwaki, M. Taniwaki, I. Sakamoto, A. Tanoue, T. Toriyama, H. Wakabayashi: Thin Solid Films Vol. 505 (2006), p.152.

DOI: 10.1016/j.tsf.2005.10.028

Google Scholar

[15] L. Fu, J. Yang, Q. Bi, W. Liu: Journal of Alloys and Compounds Vol. 482 (2009), p.122.

Google Scholar

[16] A.C. Ferrari, J. Robertson: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences Vol. 362 (2004), p.2477.

DOI: 10.1098/rsta.2004.1453

Google Scholar

[17] P. Tan, S. Dimovski, Y. Gogotsi: Phil. Trans. R Soc. Lond. A Vol. 362 (2004), p.2289.

Google Scholar

[18] F. Tuinstra, J.L. Koenig: J Chem. Phy. Vol. 53 (1970), p.1126.

Google Scholar