Enhancement of Electrochemical Performance of Li4Ti5O12/C Composite Prepared by Sol-Gel Method

Article Preview

Abstract:

Phase pure Li4Ti5O12/C composite was synthesized by sol-gel method using lithium acetate CH3COOLi•2H2O and tetrabutyl titanate [Ti(OC4H9)4] as starting materials, oxalic acid as chelating agent and sucrose as an additional carbon source. The as-prepared samples were characterized by means of TG-DTA, XRD and SEM. The electrochemical properties were investigated in terms of constant-current charge/discharge cycling and high-rate dischargeability. SEM analysis indicated that the prepared Li4Ti5O12/C composite using sucrose and oxalic acid as carbon source showed a spongy nano-particle aggregate structure, with average nano-particle size of 80-100 nm. Electrochemical results showed that the Li4Ti5O12/C composite prepared in the presence of sucrose exhibited better electrochemical performance with specific discharge capacities of 204.7, 171.6, 155.3 and 154.6 mAh/g at 0.2C, 1C, 2C, and 5C rates, respectively. And the discharge capacity could still reach 143.9mAh/g after 80 cycles at 1C rate, exhibiting excellent cycling performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-150

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. M. Colbow, J. R. Dahn and R. R. Haering: J. Power Sources Vol. 26 (1989), p.397.

Google Scholar

[2] K. Zaghib, M. Armand and M. Gauthier: J. Electrochem Soc Vol. 145 (1998), p.3135.

Google Scholar

[3] K. Zaghib, M. Simoneau, M. Arm, et al.: J. Power Sources Vol. 81-82 (1999), p.300.

Google Scholar

[4] C. H. Chen, J. T. Vaughey, A. N. Jansen, et al.: J. Electrochem Soc Vol. 148 (2001), p. A102.

Google Scholar

[5] A. D. Robertson, L. Trevino, H. Tukamoto, et al.: J. Power Sources Vol. 81-81 (1999), p.352.

Google Scholar

[6] P. Kubiak, A. Garcia, M. Womes, et al.: J. Power Sources Vol. 119-121 (2003), p.626.

Google Scholar

[7] K. Mukai, K. Ariyoshi and T. Ohzuku: J. Power Sources Vol. 146 (2005), p.213.

Google Scholar

[8] A. Guerfi, S. Sevigny, M. Lagace, et al.: J. Power Sources Vol. 119-121 (2003), p.88.

Google Scholar

[9] K. N. Jung, S. Pyun and S. W. Kim: J. Power Sources Vol. 119-121 (2003), p.637.

Google Scholar

[10] A. Singhal, G. Skandan, G. Amatucci, et al.: J. Power Sources Vol. 129 (2004), p.38.

Google Scholar

[11] T. Doi, Y. Iriyama, T. Abe, et al.: Chem. Mater Vol. 17 (2005), p.1580.

Google Scholar

[12] K. Nakahara, R. Nakajima, T. Matsushima et al.: J. Power Sources Vol. 117 (2003), p.131.

Google Scholar

[13] J. Gao, J. Ying, C. Jiang and C. Wan: J. Power Sources Vol. 166 (2007), p.255.

Google Scholar

[14] L. Cheng, X. L. Li, H. J. Liu, et al.: J. Electrochem Soc Vol. 154 (2007), p. A692.

Google Scholar

[15] S. Huang, Z. Wen and X. Yang: J. Electrochem Soc Vol. 152 (2005), p. A1301.

Google Scholar

[16] S. Huang, Z. Wen, J. Zhang, et al.: Electrochim Acta Vol. 52 (2007), p.3704.

Google Scholar

[17] S. I. Pyun, S.W. Kim and H.C. Shin: J. Power Sources Vol. 81 (1999), p.248.

Google Scholar

[18] D. Peramunage and K.M. Abraham: J. Electrochem Soc Vol. 145 (1998), p.2609.

Google Scholar

[19] G. G. Amatucci, F. Badway, A. Du Pasquier, et al.: J. Electrochem Soc Vol. 148 (2001), p. A930.

Google Scholar

[20] K. Dokko, J. Sugaya, H. Munakata, et al.: Electrochim Acta Vol. 51 (2005), p.966.

Google Scholar

[21] Y. J. Hao, Q. Y. Lai, J. Z. Lu, et al.: J. Power Sources Vol. 158 (2006), p.1358.

Google Scholar

[22] Y. J. Hao, Q. Y. Lai, Z. H. Xu, et al.: Solid State Ionics Vol. 176 (2005), p.1201.

Google Scholar

[23] Y. Hu, M. M. Doeff, R. Kostecki, et al.: J. Electrochem Soc Vol. 151 (2004), p. A1279.

Google Scholar