Synthesis and Magnetic Properties of FePt /Silica Core-Shell Nanoparticles

Article Preview

Abstract:

FePt nanoparticles (NPS), ~2nm in diameter, were synthesized and then coated with silica (SiO2) shells ~1.5nm-thick using reverse micelles as nanoreactors. The silica-coated FePt core–shell (FePt @silica) NPS were characterized by direct techniques of transmission electron microscopy (TEM). The results showed that the silica shells prevented the aggregation in liquid comparing to their bare counterparts. The as-synthesized FePt@SiO2 NPS exhibited essential characteristics of superparamagnetic behavior, as investigated by a vibrating sample magnetometer (VSM). X-ray diffraction (XRD) studies proved that the annealing at 700 °C for 30min under argon atmosphere caused the crystal structure of FePt core to transform from disordered face centered cubic (fcc) to the chemically ordered L10 FePt with face-centered tetragonal (fct) structure. This phase transition caused the change of magnetic properties of the FePt@SiO2 particles from superparamagnetism to ferromagnetism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

291-295

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. H. Sun: Adv. Mater. 18 (2006), p.393.

Google Scholar

[2] S. Maenosonoa, T. Suzukia and S. Saitab: J. Magn. Magn. Mater., Vol. 320 (2008) p.79.

Google Scholar

[3] S. Maenosono and S. Saita: IEEE Trans. Magn., Vol. 42 (2006), p.1638.

Google Scholar

[4] H. Gu, P. L. Ho and K.W.T. Tsang et al.: J. Am. Chem. Soc., Vol. 125 (2003), p.15702.

Google Scholar

[5] P. de la Presaa, M. Multignera and M. P. Moralesb, et al.: J. Magn. Magn. Mater., Vol. 316 (2007), p.753.

Google Scholar

[6] J. S. Choi, Y. W. Jun and S. I. Yeon, et al.: J. Am. Chem. Soc., Vol. 128 (2006), p.15982.

Google Scholar

[7] A. Moser, K. Takano and D. T. Margulies, et al.: J. Phys. D: Appl. Phys., Vol. 35 (2002), p.157.

Google Scholar

[8] D. Weller and A. Moser: IEEE Trans. Magn., Vol. 35 (1999), p.4423.

Google Scholar

[9] S. Yamamoto, Y. Morimoto and T. Ono, et al.: Appl. Phys. Lett., Vol. 87 (2005), p.032503.

Google Scholar

[10] M. Aslam, L. Fu and S. Li, et al.: J. Colloid Interface Sci., Vol. 290 (2005), p.444.

Google Scholar

[11] A. Tomou, I. Panagiotopoulos and D. Gournis: J. Appl. Phys., Vol. 102 (2007), p.023910.

Google Scholar

[12] Y. Tamada, Y. Morimoto and S. Yamamoto, et al.: J. Magn. Magn. Mater., Vol. 310 (2007) p.2381.

Google Scholar

[13] S. S. Kang, G. X. Miao and S. Shi, et al.: Chem. Soc., Vol. 128 (2006), p.1042.

Google Scholar

[14] D. C. Lee, F. V. Mikulec and J. M. B. Pelaez, et al.: J. Phys. Chem., Vol. 110 (2006), p.11160.

Google Scholar