Evaluation of Thermal Insulation Properties of Fibrous Mineral Fine Powders

Article Preview

Abstract:

The equivalent thermal resistance model of sepiolite mineral nanofibers has been presented in this paper to predict the thermal insulation properties of fibrous mineral fine powders. The model was based on the correlation between thermal conduction and gas & solid conduction in the fibrous system. According to the analysis about the process of heat transfer in sepiolite nanofibers, the total thermal conduction can be described as the synergism of the solid thermal conduction and the gaseous thermal conduction. From the equivalent thermal resistance model of fibrous materials in the accumulative condition, it can be seen that the thermal conduction of fibrous mineral fine powders can be evaluated by the relationship between bulk density and thermal conduction of sepiolite nanofibers. Comparing the theoretical values with experimental data obtained from thermal conduction instrument, it was found that the theoretical values corresponded well with experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

339-343

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Soheilnia, H. Xu and H. Q. Zhang, et al.: Chem. Mater. Vol. 19(2007), p.4063.

Google Scholar

[2] A. L. Robinson, S. G. Buckley and L. L. Baxter: Energy Fuels. Vol. 15(2001), p.66.

Google Scholar

[3] A. A. Balandin, S. Ghosh and W.Z. Bao, et al.: Nano Lett. Vol. 8(2008), p.902.

Google Scholar

[4] I. M. Marrucho, N. S. Oliveira and R. Dohrn: J. Chem. Eng. Data. Vol. 47(2002), p.554.

Google Scholar

[5] M. E. Itkis, F. Borondics and A. P. Yu, et al.: Nano Lett. Vol. 7(2007), p.900.

Google Scholar

[6] E. J. Rosenbaum, N. J. English and J. K. Johnson, et al.: J. Phys. Chem. B Vol. 111(2007), p.13194.

Google Scholar

[7] C. W. Padgett, O. Shenderova and D. W. Brenner: Nano Lett. Vol. 6(2006), p.1827.

Google Scholar

[8] S. H. Chen: Langmuir Vol. 15(1999), p.8618.

Google Scholar

[9] E. Kumpinsky: Ind. Eng. Chem. Res. Vol. 42(2003), p.5931.

Google Scholar

[10] C. L. Jackson, G. B. Mckenna: Chem. Mater. Vol. 8(1996), p.2128.

Google Scholar

[11] J. D. Ferguson, A. W. Weimer and S. M. George: Chem. Mater. Vol. 16(2004), p.5602.

Google Scholar

[12] M. A. Presley and P. R. Christensen: J. Geophysi. Res. Vol. 102(1997), p.9221.

Google Scholar

[13] Y. Q. Li, H. Ishida: Chem. Mater. Vol. 14(2002), p.1398.

Google Scholar

[14] A. C. Hoffman and H. J. Finkers: Powder Technol. Vol. 92(1997), p.185.

Google Scholar

[15] S. Y. Zhao, B. M. Zhang and S. Y. Du: J. Int. J. Therm. Sci. Vol. 48(2009), p.1302.

Google Scholar

[16] F. Wang, J. S. Liang and Q. G. Tang, et al.: J. Nanosci. Nanotechnol, 9(2009) in press.

Google Scholar

[17] K. Murata: Int. J. Heat Mass Transfer. Vol. 38(1995), p.3253.

Google Scholar

[18] N. Du, J. T. Fan and H. J. Wu, et al.: Int. J. Heat Mass Transfer. Vol. 52(2009), p.4350.

Google Scholar