On a Risk Model with Dependence between Interclaim Arrivals and Claim Sizes with Multiple Thresholds under Stochastic Interest

Article Preview

Abstract:

The risk model with dependence between interclaim arrivals and claim sizes is studied in the presence of multiple thresholds and stochastic interest. An integro-differential equation for some Gerber-Shiu discounted penalty functions is derived.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 179-180)

Pages:

1086-1090

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.C.M. Dickson, C. Hipp. On the time to ruin for Erlang(2) risk process. Insurance: Mathematics and Economics, Vol. 29(2001), pp.333-344.

DOI: 10.1016/s0167-6687(01)00091-9

Google Scholar

[2] H. U Gerber, E.S.W. Shiu, The time value of ruin in a Sparre Andersen risk model. North American Actuarial Journal, Vol. 9(2005), pp.49-69.

DOI: 10.1080/10920277.2005.10596197

Google Scholar

[3] S. Li, J. Garrido, On ruin for the Erlang(n) risk process. Insurance: Mathematics and Economics, Vol. 34(2004a), pp.391-408.

DOI: 10.1016/j.insmatheco.2004.01.002

Google Scholar

[4] S. Li, J. Garrido, On a general class of renewal risk process: analysis of the Gerber-Shiu function. Advances in Applied Probability, Vol. 37(2005), pp.836-856.

DOI: 10.1239/aap/1127483750

Google Scholar

[5] K.C. Yuen, J.Y. Guo. Ruin probabilities for time-correlated claims in the compound binomial model. Insurance: Mathematics and Econoics, Vol. 29(2001), p.47–57.

DOI: 10.1016/s0167-6687(01)00071-3

Google Scholar

[6] K.C. Yuen, J.Y. Guo, On a correlated aggregate claims model with Poisson and Erlang risk processes. Insurance: Mathematics and Economics, Vol. 31 (2002), pp.205-214.

DOI: 10.1016/s0167-6687(02)00150-6

Google Scholar

[7] H. Albrecher, J. Kantor. Simulation of ruin probabilities for risk processes for risk processes of Markovian type. Monte Carlo Methods and Applications, Vol. 8 (2002), p.111–127.

DOI: 10.1515/mcma.2002.8.2.111

Google Scholar

[8] H. Albrecher, O. J. Boxma, A ruin model with dependence between claim sizes and claim intervals. Insurance: Mathematics and Economics, Vol. 35(2004), pp.245-254.

DOI: 10.1016/j.insmatheco.2003.09.009

Google Scholar

[9] M. Boudreault, H. Cossette, D. Landriault, E. Marceau, On a risk model with dependence between interclaim arrivals and claim sizes. Scandinavian Actuarial Journal, Vol. 2006(2006), pp.265-285.

DOI: 10.1080/03461230600992266

Google Scholar

[10] D. Landriant. Constant dividend barrier in a risk model with interclaim-dependent claim sizes. Insurance: Mathematics and Economics, Vol. 42(2008), pp.31-38.

DOI: 10.1016/j.insmatheco.2006.12.002

Google Scholar

[11] Q.B. Meng, X. Zhang,. J.Y. Guo, On a risk model with dependence between claim sizes and claim intervals. Statistics and probability letters, Vol. 78(2008), pp.1727-1724.

DOI: 10.1016/j.spl.2008.01.031

Google Scholar

[12] X.S. Lin, K.P. Sendova. The compound Poisson risk model with multiple thresholds. Insurance: Mathematics and Economics, Vol. 42(2008), pp.617-627.

DOI: 10.1016/j.insmatheco.2007.06.008

Google Scholar

[13] X.S. Lin, K.P. Pavlova. The compound Poisson risk model with a threshold dividend strategy. Insurance: Mathematics and Economics, Vol. 38(2006), pp.57-80.

DOI: 10.1016/j.insmatheco.2005.08.001

Google Scholar