Phylogenetic and Microbial Community Analysis Based on amoA Gene and 16SrDNA in Nitrosification Biofilm Reactor

Article Preview

Abstract:

In order to analyze microbial community and phylogenesis in nitrosification biofilm reactor, a partial stretch of the gene encoding the active-site polypeptide of ammonia monooxygenase (amoA) was amplified and the gene libraries were constructed. The result of gene sequences and phylogenetic analysis showed that Nitrosomonas eutropha was the predominant species in the reactor. Besides, there were also some kinds of ammonia-oxidizing microbe uncultured in the system. PCR-SSCP analysis of 16SrDNA of archaebacteria and eubacterium indicated that with the rising of ammonia oxidation rate, the structure and distribution of microbial community was influenced and the diversity of microbial communities decreased, and the decreasing of specificity in the reactor might be the key factor for the rising of ammonia oxidation rate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 183-185)

Pages:

1051-1056

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.W. Gao, Y.Z. Peng and W.M. Wu, Environ Sci Technol. Vol. 44 (2010), pp.5015-5021.

Google Scholar

[2] Y.Z. Peng and G.B. Zhu, Appl Microbiol Biot. Vol. 73 (2006), pp.15-26.

Google Scholar

[3] H.J. Laanbroek and S. Gerards, Arch Microbiol. Vol. 159 (1993), pp.453-459.

Google Scholar

[4] M.G. Klotz, J. Alzerreca and J.M. Norton, Fems Microbiol Lett. Vol. 150 (1997), pp.65-73.

Google Scholar

[5] H. Mctavish, J.A. Fuchs and A.B. Hooper, J Bacteriol. Vol. 175 (1993), pp.2436-2444.

Google Scholar

[6] U. Purkhold, A.P. Roser, S. Juretschko, M.C. Schmid, H.P. Koops and M. Wagner, Appl Environ Microb. Vol. 66 (2000), pp.5368-5382.

Google Scholar

[7] U. Purkhold, M. Wagner, G. Timmermann, A.P. Roser, H.P. Koops, Int J Syst Evol Micr. Vol. 53 (2003), pp.1485-1494.

Google Scholar

[8] G.A. Kowalchuk and J.R. Stephen, Annu Rev Microbiol. Vol. 55 (2001), pp.485-529.

Google Scholar

[9] F. Schwieger and C.C. Tebbe, Appl Environ Microb. Vol. 64 (1998), pp.4870-4876.

Google Scholar

[10] M.N. Widjojoatmodjo, A.C. Fluit and J. Verhoef, J Clin Microbiol. Vol. 33 (1995), pp.2601-2606.

Google Scholar

[11] C. Delbes, R. Moletta and J.J. Godon, Fems Microbiol Ecol. Vol. 35 (2001), pp.19-26.

Google Scholar

[12] E. Zumstein, R. Moletta, J.J. Godon, Environ Microbiol. Vol. 2 (2000), pp.69-78.

Google Scholar

[13] C. Ling and M. Zhenhuan, Journal of Zhejiang University (Science Edition). Vol. 31 (2004), pp.565-569.

Google Scholar

[14] H.O. Kang, C.W. Chung, H.W. Kim, Y.B. Kim and Y.H. Rhee, Anton Leeuw Int J G. Vol. 80 (2001), pp.185-191.

Google Scholar

[15] L. Raskin, J.M. Stromley, B.E. Rittmann and D.A. Stahl, Appl Environ Microb. Vol. 60 (1994), pp.1232-1240.

Google Scholar

[16] B.J. Bassam, G. Caetanoanolles and P.M. Gresshoff, Anal Biochem. Vol. 196 (1991), pp.80-83.

Google Scholar

[17] Z. Xuesong and G. Gangming, Biotechnology Bulletin. Vol. 10 (2009), pp.185-188.

Google Scholar