Adsorption of Nitrobenzene and Benzoic Acid from Aqueous Solution by All-Silica Zeolite Beta

Article Preview

Abstract:

All-silica zeolite beta (BEA) was tested for the ability to remove nitrobenzene and benzoic acid from aqueous solution. The effect of contact time, temperature, initial concentration and initial pH were investigated in a batch reactor system. Adsorption of nitrobenzene decreased with increase in temperature. The equilibrium isotherm was L-shaped. Nitrobenzene adsorption was independent of pH. Adsorption of benzoic acid increased with increasing temperature from 5 °C to 22 °C and decreased with increasing temperature from 22°C to 32 °C. The equilibrium isotherm was approximately S-shaped. Benzoic acid adsorption was dependent of pH. At pH8.0, benzoic acid can also be adsorbed effectively. The results above confirmed that BEA had the potential to be utilized as relatively effective adsorbent for nitrobenzene and benzoic acid removal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 183-185)

Pages:

1378-1382

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.K. Parida, S. Dash, S. Patel and B.K. Mishra: Adv. Colloid Interface Sci Vol. 121 (2006), p.77.

Google Scholar

[2] P.A. Mangrulkar, S.P. Kamble, J. Meshram and S.S. Rayalu: J. Hazard. Mater Vol. 160 (2008), p.414.

Google Scholar

[3] S.B. Haderlein, K.W. Weissmahr and R.P. Schwarzenbach: Environ. Sci. Technol Vol. 30 (1996), p.612.

Google Scholar

[4] K.W. Weissmahr, S.B. Haderlein and R.P. Schwarzenbach: Environ. Sci. Technol Vol. 31 (1997), p.240.

Google Scholar

[5] B.C. Barja and M.D.S. Afonso: Environ. Sci. Technol Vol. 39 (2005), p.585.

Google Scholar

[6] M.C. Lu, G.D. Roam, J.N. Chen and C.P. Huang: Water Res Vol. 30 (1996), p.1670.

Google Scholar

[7] K. Bourikas, M. Stylidi, D.I. Kondarides and X.E. Verykios: Langmuir Vol. 21 (2005), p.9222.

DOI: 10.1021/la051434g

Google Scholar

[8] C. Cooper and R. Burch: Water Res Vol. 33 (1999), p.3689.

Google Scholar

[9] M. Khalid, G. Joly and A. Renaud: Ind. Eng. Chem. Res Vol. 43 (2004), p.5275.

Google Scholar

[10] S. Wang, H. Li and L. Xu: J. Colloid Interface Sci Vol. 295 (2006), p.71.

Google Scholar

[11] N. Gokulakrishnan, A. Pandurangan and P.K. Sinha: Chemosphere Vol. 63 (2006), p.458.

Google Scholar

[12] Q. Qin, J. Ma and K. Liu: J. Colloid Interface Sci Vol. 315 (2007), p.80.

Google Scholar

[13] W.T. Tsai, H.C. Hsu, T.Y. Su, K.Y. Lin and C.M. Lin: J. Colloid Interface Sci Vol. 299 (2006), p.513.

Google Scholar

[14] J.M. Chern and Y.W. Chien: Ind. Eng. Chem. Res Vol. 40 (2001), p.3775.

Google Scholar

[15] L.G. Yan, J. Wang, H.Q. Yu, Q. Wei, B. Du and X.Q. Shan: Appl. Clay Sci Vol. 37 (2007), p.226.

Google Scholar

[16] L. Huang, H. Xiao and Y. Ni: Colloid. Surface. A: Physicochem. Eng. Aspects Vol. 247 (2004), p.129.

Google Scholar

[17] H. Nishikiori, J. Shindoh, N. Takahashi, T. Takagi, N. Tanaka and T. Fujii: Appl. Clay Sci Vol. 43 (2009), p.160.

Google Scholar

[18] K. Spildo, H. Høiland and M.K. Olsen: J. Colloid Interface Sci Vol. 221 (2000), p.124.

Google Scholar

[19] M.A. Camblor, P.A. Barrett, M. Díaz-Cabañas, L.A. Villaescusa, M. Puche, T. Boix, E. Pérez and H. Koller: Microp. Mesop. Mater Vol. 48 (2001), p.11.

Google Scholar