[1]
Krasner, S.W., et al, Occurrence of a new generation of disinfection byproducts, Environ Sci Technol, vol. 40 (2006), pp.7175-7185.
Google Scholar
[2]
Adams, L.K.,D.Y. Lyon P.J. J, Alvarez. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water Res, vol. 40 (2006), pp.3527-3532.
DOI: 10.1016/j.watres.2006.08.004
Google Scholar
[3]
Franklin, N.M., et al, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility., Environ Sci Technol, vol. 41 (2007), pp.8484-8490.
DOI: 10.1021/es071445r
Google Scholar
[4]
Makhluf, S., et al, Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide, Adv Funct Mater, . vol. 15 (2005), pp.1708-1715.
DOI: 10.1002/adfm.200500029
Google Scholar
[5]
Zhang, L., Y. Ding, M. Povey, D. York. ZnO nanofluids - A potential antibacterial agent , Prog Nat Sci, vol. 18 (2008), p: 939-944.
DOI: 10.1016/j.pnsc.2008.01.026
Google Scholar
[6]
Zhang, L.L., et al, Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli, J Nanopart Res, vol. 12(2010), pp.1625-1636.
DOI: 10.1007/s11051-009-9711-1
Google Scholar
[7]
Zhang, L.L., Y.H. Jiang, Y.L. Ding, M. Povey, D. York. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids), J Nanopart Res, vol. 9 (2007), pp.479-489.
DOI: 10.1007/s11051-006-9150-1
Google Scholar
[8]
Sawai, J, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay, J Microbiol Meth, vol. 54 (2003), pp.177-182.
DOI: 10.1016/s0167-7012(03)00037-x
Google Scholar
[9]
Hu, C., Y.Q. Lan, J.H. Qu, X.X. Hu, A.M. Wang. l, Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria, J Phys Chem B, vol. 110 (2006), pp.4066-4072.
DOI: 10.1021/jp0564400
Google Scholar
[10]
Sawai, J., H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu., Evaluation of growth-inhibitory effect of ceramics powder slurry on bacteria by conductance method, J Chem Eng Jpn, vol. 28 (1995), pp.288-293.
DOI: 10.1252/jcej.28.288
Google Scholar
[11]
Sawai, J., et al. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry,. J Ferment Bioeng vol. 86 (1998), pp.521-522.
DOI: 10.1016/s0922-338x(98)80165-7
Google Scholar
[12]
Fang, M., Chen, J. H., Xu, X. L., Yang, P. H., Hildebrand, H. F. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests,. Int J Antimicrob Ag vol. 27 (2006), pp.513-517.
DOI: 10.1016/j.ijantimicag.2006.01.008
Google Scholar
[13]
Yamamoto, O.,M. Hotta,J. Sawai,T. SasamotoH. Kojima. Influence of powder characteristic of ZnO on antibacterial activity - Effect of specific surface area, J Ceram Soc Jpn, vol. 106 (1998), pp.1007-1011.
DOI: 10.2109/jcersj.106.1007
Google Scholar
[14]
Sawai, J., H. Igarashi,A. Hashimoto,T. KokuganM. Shimizu. Effect of particle size and heating temperature of ceramic powders on antibacterial activity of their slurries, J Chem Eng Jpn, vol. 29 (1996), pp.251-256.
DOI: 10.1252/jcej.29.251
Google Scholar
[15]
Sawai, J., et al, Antibacterial characteristics of magnesium oxide powder, World Journal of Microbiology & Biotechnology, vol. 16 (2000), pp.187-194.
Google Scholar
[16]
Yamamoto, O., M. Komatsu,J. SawaiZ.E. Nakagawa. Effect of lattice constant of zinc oxide on antibacterial characteristics, J Mater Sci-Mater M, vol15(2004) pp.847-851.
Google Scholar