[1]
Romero-Puertas, M.C., Palma, J.M., Gomez, M.L., Del Río, A., & Sandalio, L.M. (2002). Cadmium causes the oxidative modification of proteins in pea plants. Plant, Cell and Environment, 25, 677–686.
DOI: 10.1046/j.1365-3040.2002.00850.x
Google Scholar
[2]
Chaoui, A., Mazhoudi, S., Ghorbal, M.H., & Ferjani, E.E.L. (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus ulgaris L. ). Plant Science, 127, 139–147.
DOI: 10.1016/s0168-9452(97)00115-5
Google Scholar
[3]
Kanazawa, S., Sano, S., Koshiba, T., & Ushimaru, T. (2000). Changes in antioxidative in cucumber cotyledons during natural senescence: Comparison with those during dark-induced senescence. Plant Physiology, 109, 211–216.
DOI: 10.1034/j.1399-3054.2000.100214.x
Google Scholar
[4]
Noctor, G., & Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygenunder control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249–279.
DOI: 10.1146/annurev.arplant.49.1.249
Google Scholar
[5]
Lin, C.C., & Kao, C.H. (2000). Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regulation, 30, 151–155.
Google Scholar
[6]
Asada, K. (1994). Production and action of active oxygen species in photosynthetic tissues. In: Casues of Photooxidative Stress and Amelioration of Defense Systems in Plants (Foyer C., Mullineaux P., eds. ). Boca Raton, CRC Press.
DOI: 10.1201/9781351070454-3
Google Scholar
[7]
Sun, R.L., Zhou, Q.X., Sun, F.H., & Jin, C.X. (2007). Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environmental and Experimental Botany, 60, 468–476.
DOI: 10.1016/j.envexpbot.2007.01.004
Google Scholar
[8]
Sun, L.N., Zhang, Y.H., Sun, T.H., Gong, Z.Q., Lin, X., & Li, H.B. (2006).
Google Scholar
[9]
Liu, P.C., Wang, H., Cheng, J.Q., & Huang, J.C. (2004). Regulation of nitric oxide on drought-induced membrane lipid peroxidation in wheat leaves. Acta Botanica Boreali-Occidentalia Sinica, 24, 141–145.
Google Scholar
[10]
Krivosheeva, A., Tao, D.L., Ottander, C., Wingsle, G., Dube, S.L., & Oquist, G. (1996). Cold acclimation and photoinhibition of photosynthesis in Scots pine, Planta, 200, 296–305.
DOI: 10.1007/bf00200296
Google Scholar
[11]
Wu, Y.X., & von Tiedemann, A. (2002). Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L. ) exposed to ozone. Environmental Pollution, 116, 37–47.
DOI: 10.1016/s0269-7491(01)00174-9
Google Scholar
[12]
Pinhero, R.G., Rao, M.V., Paliyath, G., Murr, D.P., & Fletcher, R.A. (1997).
Google Scholar
[13]
Becher, M., & Hofner, W. (1994). Demonstration of a Cd-complexing compound in Scenedesmus subspicatus and Zea mays L. similar to phytochelatins. Z Pflanzen Bodenkunde, 157, 87–92.
DOI: 10.1002/jpln.19941570205
Google Scholar
[14]
Sandalio, L.M., Dalurzo, H.C., Gómez, M., Romero-Puertas, M.C., & del Río, L.A. (2001). Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany, 52, 2115–2126.
DOI: 10.1093/jexbot/52.364.2115
Google Scholar
[15]
Vitoria, A.P., Lea, P.J., & Azevedo, R.A. (2001). Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry, 57, 701–710.
DOI: 10.1016/s0031-9422(01)00130-3
Google Scholar
[16]
Dong, J., Wu, F.B., & Zhang, G.P. (2006). Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere, 64, 1659–1666.
DOI: 10.1016/j.chemosphere.2006.01.030
Google Scholar