Video Vehicle Detection Based on Local Feature

Article Preview

Abstract:

This paper presents a video vehicle detection method that combines local binary pattern (LBP) and motion histogram. First, use LBP modeling and updating the background in video image. Second, detect the video vehicles by means of the motion histogram. Finally, eliminates shadows from the detected vehicle region, and improves accuracy of vehicle detection. Experiments in some vehicle database show that our method has a better performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-60

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Gupte, O. Masoud, R.F.K. Martin, N.P. Papanikolopoulos. Detection and classification of vehicles. IEEE Trans on Intelligent Transportation System, 3(1): 37-47, (2002).

DOI: 10.1109/6979.994794

Google Scholar

[2] Shu-Ching Chen, Mei-Ling Shyu, S. Peeta, Chengcui Zhang. Learning-based spatio-temporal vehicle tracking and indexing for transportation multimedia database systems. IEEE Trans on Intelligent Transportation System, 4(3): 154-167, (2004).

DOI: 10.1109/tits.2003.821290

Google Scholar

[3] A. Monnet, A. Mittal, N. Paragios, V. Ramesh. Background modeling and subtraction of dynamic scenes. Proc. ICCV 2003, Princeton, USA, 2003, Vol. 2, p.1305–1312.

DOI: 10.1109/iccv.2003.1238641

Google Scholar

[4] D.S. Lee, J.J. Hull, B. Erol. A Bayesian framework for Gaussian mixture background modeling, Proc. ICPR 2003, California, USA, 2003, Vol. 2, p.973–976.

Google Scholar

[5] P. Spagnolo, T.D. Orazio, M. Leo, A. Distante. Moving object segmentation by background subtraction and temporal analysis. Image Vision Computing, 24 (2006): 411-423, (2006).

DOI: 10.1016/j.imavis.2006.01.001

Google Scholar

[6] T. Ojala, M. Pietikalnen, T. Maenpaa. Multiresolution gray—scale and rotation invariant texture classification with local binary patterns. IEEE Trans on Pattern Analysis and Machine Intelligence, 24(7): 971-987, (2002).

DOI: 10.1109/tpami.2002.1017623

Google Scholar