Patent Classification Using Hybrid Classifier Systems

Article Preview

Abstract:

Patents are distributed through hundreds of collections, divided up by general area. A hybrid classifier system thus can be a powerful solution to difficult patent classification problems. In this study, we present a system for classifying patent documents on a hybrid approach by combining multiple text classifiers (Naïve Bayes, KNN and Rocchio). Decisions made by various text classifiers can be combined by voting and sampling mechanisms in the system. A prototype system was developed and tested in a real world task. The results have indicated that the accuracy of the hybrid approach is more stable than that of any of the three individual text classifiers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

458-463

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. A. Barros, E. F. A. Silva, R. B. C. Prudencio, V. M. Filho, A. C. A. Nascimento: Combining Text Classifiers and Hidden Markov Models for Information Extraction. International Journal on Articial Intelligence Tools. Vol. 18(2) (2009).

DOI: 10.1142/s0218213009000147

Google Scholar

[2] P. Bennett, S. Dumais, E. Horvitz,: The Combination of Text Classifiers Using Reliability Indicators. Information Retrieval. Vol. 8, (2005), pp.67-100.

DOI: 10.1023/b:inrt.0000048491.59134.94

Google Scholar

[3] Lee, C. H.: A Study of Apply-ing Data Mining Classification Techniques to Patent Analysis. Master Thesis, Chung-Yuan Univ. (2003).

Google Scholar

[4] C. J. Fall, A. Torcsvari, K. Benzineb and G. Karetka: Automated Categorization in the International Patent Classification. ACM SIGIR Forum archive. Vol. 37(1), (2003) pp.10-25.

DOI: 10.1145/945546.945547

Google Scholar

[5] A. K. Khalid, A. Tyrrel, A. Vachher and T. Travers: Combining Multiple Classifiers for Text Categorization. CIKM2001. (2001) pp.5-10.

Google Scholar

[6] L. S. Larkey: A patent search and classification system. In Proceedings of DL-99, 4th ACM Conference on Digital Libraries. (1999) pp.179-187.

Google Scholar

[7] L. S. Larkey and W. B. Croft: Combining classifiers in text categorization. Proceedings of SIGIR-96, 19th ACM International Conference on Research and Development in Information Retrieval. (1996) pp.289-297.

DOI: 10.1145/243199.243276

Google Scholar

[8] S. Lee, H. Seol and Y. Park: Using patent information for designing new product and technology. R & D Management. Vol. 38(2), (2008) pp.169-181.

Google Scholar

[9] T. Thorsten and M. A. Mittermayer: Text Mining for Technology. Monitoring IEEE IEMC (2002).

Google Scholar

[10] Y. Tseng, C. Lin and Y. Lin: Text mining techniques for patent analysis. Information Processing & Management. Vol. 43(5), (2007) pp.12-16.

DOI: 10.1016/j.ipm.2006.11.011

Google Scholar

[11] C. J. Van Rijsbergen: Information Retrieval. Butterworths, London (1979).

Google Scholar

[12] Y. Yang and X. Liu: A re-examination of text categorization methods. SIGIR '99, Proceedings of the 22ndb Annual International ACM Conference on Research and Development in Information Retrieval. (1999) pp.42-49.

DOI: 10.1145/312624.312647

Google Scholar