Numerical Investigation on Particle Velocity in Cold Spraying of Hydroxyapatite Coating

Article Preview

Abstract:

Hydroxyapatite (HA) is a calcium phosphate ceramics and HA coating is essential for the medical metallic implants. This paper presents a novel cold spraying method for the formation of HA coatings instead of the commonly used thermal spraying method. The HA particle velocity in the cold spraying process is investigated numerically using a computational fluid dynamics (CFD) program, FLUENT. Stress is laid on how the geometric parameters of the nozzle and the process parameters influence the particle velocity. A Taguchi’s orthogonal array is employed to arrange the simulation conditions and the simulation results are analyzed by analysis of variance (ANOVA) method to reveal the main factors influencing HA particle acceleration significantly. The changes of the HA particle velocity under different cold spraying conditions are simulated to clarify the effects of the nozzle geometry, accelerating gas condition and property of particle itself on HA particle acceleration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

717-722

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. P. Lu, G. Y. Xiao, S. T. Li, R. X. Sun and M. S. Li: Applied Surface Science, Vol. 252 (2006), pp.2412-2421.

Google Scholar

[2] S. Dyshlovenko, L. Pawlowski, B. Pateyron, I. Smurov and J. H. Harding: Surface & Coatings Technology, Vol. 200 (2006), pp.3757-3769.

DOI: 10.1016/j.surfcoat.2005.04.002

Google Scholar

[3] M. Inagaki and T. Kameyama: Biomaterials, Vol. 28 (2007), pp.2923-2931.

Google Scholar

[4] A. Rabiei, B. Thomas, C. Jin, R. Narayan, J. Cuomo, Y. Yang and J. L. Ong: Surface & Coatings Technology, Vol. 200 (2006), pp.6111-6116.

DOI: 10.1016/j.surfcoat.2005.09.027

Google Scholar

[5] M. Katto, K. Kurosawa, A. Yokotani, S. Kubodera, A. Kameyama, T. Higashiguchi, T. Nakayama and M Tsukamoto: Applied Surface Science, Vol. 248 (2005), pp.365-368.

DOI: 10.1016/j.apsusc.2005.03.055

Google Scholar

[6] R. S. Lima, K. A. Khor, H. Li, P. Cheang and B. R. Marple: Materials Science and Engineering A , Vol. 396 (2005), pp.181-187.

Google Scholar

[7] C. Wang, J. Ma, W. Cheng and R. Zhang: Materials Letters, Vol. 57 (2002), pp.99-105.

Google Scholar

[8] X. F. Xiao and R. F. Liu: Materials Letters, Vol. 60 (2006), pp.2627-2632.

Google Scholar

[9] S. Zhang, X. Zeng, Y. Wang, K. Cheng and W. Weng: Surface &Coatings Technology, Vol. 200 (2006), pp.6350-6354.

Google Scholar

[10] A. Stoch, W. Jastrzebski, E. Dlugon, W. Lejda, B. Trybalska, G. J. Stoch and A. Adamczyk: Journal of Molecular Structure, Vol. 744-747 (2005), pp.633-640.

DOI: 10.1016/j.molstruc.2004.10.080

Google Scholar

[11] J. Cizek, K. A. Khor and Z. Prochazka: Materials Science and Engineering C, Vol. 27 (2007), pp.340-344.

Google Scholar

[12] C. J. Li, W. Y. Li, Y. Y. Wang, G. J. Yang and H. Fukanuma: Thin Solid Films, Vol. 489 (2005), pp.79-85.

Google Scholar

[13] T. C. Jen, L. Li, W. Cui, Q. Chen and X. Zhang: International Journal of Heat and Mass Transfer, Vol. 48 (2005), pp.4348-4396.

Google Scholar

[14] M. Karimi, A. Fartaj, G. Rankin, D. Vanderzwet, W. Birtch and J. Villafuerte: Journal of Thermal Spray Technology, Vol. 15 (2006), pp.518-523.

DOI: 10.1361/105996306x146866

Google Scholar