The Effect of Purity of Zirconium Material on Mechanical Properties and Microstructure of Zr-Based Bulk Metallic Glass

Article Preview

Abstract:

Series of rod samples of Zr55Al10Ni5Cu30 alloy were prepared by magnetic suspend melting and copper mold suction casting method using 99.9wt% high purity zirconium and 99.4wt% low purity sponge zirconium respectively, the effect of purity of zirconium material on mechanical properties and microstructure of Zr-based bulk metallic glass were investigated. The result shows that high purity material alloy could enhance the thermal stability and glass forming ability of Zr-based bulk amorphous alloy, compression fracture surface analysis indicate that the vein patterns density increase with the material elements purity increase, the average compressive fracture strength is increased to 8.52% than that of low purity samples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

2897-2902

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Klement, W. Willens, R. H. and Duwez, P, Nature, 1960, 187, 869.

Google Scholar

[2] Johnson WL. MRS Bull 1999; 24: 42.

Google Scholar

[3] Wang WH, Dong C, Shek CH. Mater Sci Eng R 2004; 44: 45.

Google Scholar

[4] Ashby MF, Greer AL. Scripta Mater 2006; 54: 321.

Google Scholar

[5] Greer AL, Ma E. MRS Bull 2007; 32: 611.

Google Scholar

[6] Telford M. Mater Today 2004; 7: 36.

Google Scholar

[7] Inoue A. Acta Mater 2000; 48: 279.

Google Scholar

[8] Min Q, Fecht H J. J. Materials Characterization, 2001, 47: 215-218.

Google Scholar

[9] Uriarte J L, Zhang T, Deledda S, et al. J. Journal of Non-Crystalline Solids, 2001, 287: 197-200.

Google Scholar

[10] Zhao D Q, Zhang Y, Pan M X, et al. J. Material Transactions, JIM, 2000, 41(11): 1427-1431.

Google Scholar

[11] Eckert J, Kübler A, Reger-Leonhard A, et al. J. Mater Trans, JIM, 2000, 41(11): 1415-1422.

Google Scholar

[12] CHEN Wei rong, WANG Ying min, QIANG Jian bing, et al. J. Hot Working Technology, 2001, 6: 25-26.

Google Scholar

[13] ZHANG Qing sheng , ZHANG Hai feng , QIU Ke qiang, et al. J. Chinese Journal of Materials Research, 2002, 16(1): 9-12.

Google Scholar

[14] TONG Cun zhu, ZHENG Ping, BAI Hai yang, et al. J. Acta Physica Sinica, 2002, 51(7): 1559-1563.

Google Scholar

[15] Inoue A. J. Materials Science and Engineering, 2001, A304 306: 1-10.

Google Scholar

[16] Sordelet D J, Rozhkova E, Besser M F, et al.J. Intermetallics, 2002, 10: 1233-1240.

Google Scholar

[17] Damote L C, Mendoza-Zelis L A, Eledda S D, et al.J. Materials Science and Engineering A, 2003, A343: 194-198.

Google Scholar

[18] ZHANG Jie, LUO Jianl in, BAI Hai yang, et al.J. Acta Physica Sinica, 2001, 50(9): 1747-1750.

Google Scholar

[19] Qiu K Q, Wang A M, Zhang H F, et al. J. Intermetallics, 2002, 10: 1283-1288.

Google Scholar

[20] He D W, Zhao Q, Wang W H, et al. J. Journal of Non-Crystalline Solids, 2002, 297: 84-90.

Google Scholar

[21] Gebert A, Eckert J, Schultz L. Acta Mater 1998; 46: 5475.

Google Scholar

[22] Shen T D, Schwarz R B. Appl Phys Lett 1999; 75(1): 49.

Google Scholar

[23] Lin X H, Johnson W L, Rhim W K. Mater Trans JIM 1997; 38(5): 473.

Google Scholar

[24] Sordelet D J, Yang X Y, Rozhkova E A, Besser MF, Kramer M J. Appl Phys Lett 2003; 83(1): 69.

Google Scholar

[25] Murty B S, Ping D H, Hono K, Inoue A. Acta Mater 2000; 48(15): 3985.

Google Scholar

[26] Liu C T, Chisholm MF, Miller MK. Intermetallics 2002; 10(11-12): 1105.

Google Scholar

[27] Zhang Y, Pan MX, Zhao DQ, Wang RJ, Wang WH. Mater Trans JIM 2000; 41(11): 1410.

Google Scholar

[28] F. Jiang, Z.J. Wang, Z.B. Zhang, J. Sun. Scripta Materialia 2005 (53): 487-491.

Google Scholar

[29] Lu Z P, Liu C T. J Mater Sci 2004; 39(12): 3965.

Google Scholar

[30] Lin X H, Johnson W L, Rhim W K. Materials Transactions, JIM 1997; 38(5): 473-7.

Google Scholar

[31] Eckert et al J. Materials Transactions, JIM 1998; 39(6): 623-32.

Google Scholar

[32] Gebert A, Eckert J, Schultz L. Acta Mater1998; 46(15): 5475-82.

Google Scholar

[33] D. H. Ping, K. Hono and A. Inoue. Materials Science Forum, 1999; 307-31-6. Journal of Metastable and NanocrystallineMaterials, 1999, 1: 31-6. Trans TechPublica tions, Switzerland.

Google Scholar

[34] Ping D H, Hono K, Inoue A. In: Bulk metallic glasses. MRS vol. 554. Johnson W L, Inoue A, Liu C T, editors. Warrendale (PA): MRS Publication; 1999. pp.3-8.

DOI: 10.1557/proc-554-3

Google Scholar

[35] Chen et al MW. Applied Physics Letters 1999; 74(6): 812-4.

Google Scholar

[36] Koster U, Meinhard J, Roos S, Rudiger A. Mater Sci Forum 1996; 225-227: 311.

Google Scholar

[37] Murty B S, Ping D H, Hono K. Applied Physics Letters 2000; 76(1): 55-7.

Google Scholar

[38] Inoue Akihisa, et al. Materials Transactions, JIM 1999; 40(10): 1181-4.

Google Scholar

[39] Chen L C, Spaepen F. Nature 1988; 336(6197): 366.

Google Scholar

[40] Xu D H, Duan G, Johnson W L. Phys Rev Lett 2004; 92: 245504.

Google Scholar

[41] Inoue A, Zhang T. Mater Trans JIM 1996; 37(11): 1726.

Google Scholar