Effects of Submerged Heater on the Vertical Bridgman Crystal Growth

Article Preview

Abstract:

This study used numerical simulation to investigate the growth conditions of yttrium aluminum garnet (YAG) single crystals by the vertical Bridgman method, and discusses the process performed with or without the installation of a submerged heater (SH). The maximum flow velocity of the melted material surrounding the melt/crystal interface can be decreased, and the deflection of the melt/crystal interface can be changed under various furnace temperature gradients and distances. The minimum of the maximized flow rate indicates that the natural convection can be decreased and controlled. In this manner, the growth rate of crystals increases in an identical environment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

4022-4027

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.W. Fu and W.R. Wilcox: Journal of Crystal Growth, Vol. 48 (1980), p.416.

Google Scholar

[2] K. Koai, K. Sonneberg and H.J. Venzl: Journal of Crystal Growth, Vol. 137 (1994), p.59.

Google Scholar

[3] C.E. Chang and W.R. Wilcox: Journal of Crystal Growth, Vol. 21 (1974), p.135.

Google Scholar

[4] K. Itani, H. Sasabe, M. Wachi, S. Mizuniwa and I. Fujisaki: Hitachi Cable Review, Vol. 20 (2001), p.35.

Google Scholar

[5] J.A. Dantzig and L.S. Chao: TMS Fall Meeting, Indianapolis, Indiana, USA, Oct. (1989).

Google Scholar

[6] S. Sen and W.R. Wilcox: Journal of Crystal Growth, Vol. 28 (1975), p.36.

Google Scholar

[7] S. Brandon and J.J. Derby: Journal of Crystal Growth, Vol. 110 (1991), p.481.

Google Scholar

[8] S. Brandon and J.J. Derby: Journal of Crystal Growth, Vol. 121 (1991), p.473.

Google Scholar

[9] C.W. Lan and C.Y. Tu: Journal of Crystal Growth, Vol. 233 (2001), p.523.

Google Scholar

[10] C.W. Lan, C.Y. Tu and Y.F. Lee: Internal Journal of Heat and Mass Transfer, Vol. 46 (2003), p.1629.

Google Scholar

[11] M.F. Lu, S.H. Chuang and H.J. Lee: Advanced Materials Research, Vol. 154-155 (2011), p.1538.

Google Scholar

[12] D.H. Kim and R.A. Brown: Journal of Crystal Growth, Vol. 96 (1989), p.609.

Google Scholar

[13] P. Capper, J.E. Harries, E.O. Keefe, C.L. Jones, C.K. Ard, P. Mackett and D. Dutton: Materials Science and Engineering B. Vol. 16 (1993), p.29.

Google Scholar

[14] A.G. Ostrogorsky: Journal of Crystal Growth, Vol. 128 (1993), p.201.

Google Scholar

[15] S. Meyer and A.G. Ostrogorsky: Journal of Crystal Growth, Vol. 166 (1996), p.700.

Google Scholar

[16] S.V. Bykova, V.D. Golyshev, M.A. Gonik, V.B. Tsvetovsky, V.I. Deshko, A.G. Ostrogorsky and Z. Dragojlovic: ASME, Heat Transfer Division, Vol. 284 (1994), p.255.

Google Scholar

[17] S.V. Patanker: Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, (1980).

Google Scholar