Microstructural Study of Nanostructured ZrO2 Based Thermal Barrier Coatings Fabricated by High Efficiency Supersonic Plasma Spraying

Article Preview

Abstract:

In this paper, the microstructure of nanostructured zirconia (ZrO2) based coating fabricated by newly developed process, high efficiency supersonic atmospheric plasma spraying (SAPS), is studied. The velocity and surface temperature of in-flight particles during spraying were monitored by on-line system and the microstructure and phase composition of the as-sprayed coating was characterized with SEM, TEM and XRD. Meanwhile, the bonding strength between the top coating and bond coating was measured. The results showed the average in-flight velocity of YSZ particles in SAPS was about 430m/s, which was much higher than that of conventional atmospheric plasma spraying (APS). The as-sprayed coating was composed of well-adhered fine lamellar structures with thickness of 1-4μm. The desirable structure was attributed to higher impact velocity of in-flight particles during SAPS process, resulting in the improvement of flattening degree of molten particles. Meanwhile, the SAPS-YSZ coating exhibited a bimodal distribution with small grains (30-50nm) and large grains (60-110nm), the latter was the main microstructure of the coating. In addition, it was found that the monoclinic zirconia existing in the original powders transformed into tetragonal phase after plasma spraying and the bonding strength of as-sprayed coating was as high as 46±3MPa. The high efficiency supersonic plasma spray, which offers some unique advantages over the conventional plasma spraying process, is expected to be potentially used to deposit a wide variety of nanostructured coatings at lower cost.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

80-87

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.P. Padture, M. Gell and E.H. Jordan: Science Vol. 296 (2002) p.280.

Google Scholar

[2] S. Bose and J. DeMasi-Marcin: J. Therm. Spray Technol. Vol. 6 (1997) p.99.

Google Scholar

[3] W.A. Nelson and R.M. Orenstein: J. Therm. Spray Technol. Vol. 6 (1997) p.176.

Google Scholar

[4] M.B. Beardsley: J. Therm. Spray Technol. Vol. 6 (1997) p.181.

Google Scholar

[5] J.R. Nicholls: Mater. Res. Soc. Bull. Vol. 28 (2003) p.659.

Google Scholar

[6] A. Aygun, A.L. Vasiliev and N.P. Padture: Acta Mater. Vol. 55 (2007) p.6734.

Google Scholar

[7] S. Stecura: Adv. Ceram. Mater. Vol. 1 (1986) p.68.

Google Scholar

[8] C.G. Zhou, N. Wang, Z.B. Wang, S.K. Gong and H.B. Xu: Scripta Mater. Vol. 51 (2004) p.945.

Google Scholar

[9] H. Chen and C.X. Ding: Surf. Coat. Technol. Vol. 150 (2002) p.31.

Google Scholar

[10] B. Liang, C.X. Ding. Surf. Coat. Technol. Vol. 197 (2005) p.185.

Google Scholar

[11] G.M. Ingo and T. De Caro: Acta Mater. Vol. 56 (2008) p.5177.

Google Scholar

[12] T.S. Hille, T.J. Nijdam, A.S.J. Suiker, S. Turteltaub and W.G. Sloof: Acta Mater. Vol. 57 (2009) p.2624.

DOI: 10.1016/j.actamat.2009.01.022

Google Scholar

[13] G. Johner and K.K. Schweitzer: Thin Solid Films Vol. 119 (1984) p.301.

Google Scholar

[14] K.A. Khor, Z.L. Dong and Y.W. Gu: Mater. Lett. Vol. 38 (1999) p.437.

Google Scholar

[15] S. Rangaraj and K. Kokini: Acta Mater. Vol. 52 (2004) p.455.

Google Scholar

[16] Z. Kavaliauskas, K. Brinkiene, J. Cesniene and R. Kezelis: Lithuanian J. Phys. Vol. 40 (2009) p.85.

Google Scholar

[17] S. Ghorui, M. Vysohlid, J.V.R. Heberlein and E. Pfender: Phys. Rev. E Stat. Nonlin Soft. Matter. Phys. Vol. 76 (2007) p.016404.

Google Scholar

[18] W. Chi, S. Sampath and H. Wang: J. Am. Ceram. Soc. Vol. 91 (2008) p.2636.

Google Scholar

[19] Y. Tan, J.P. Longtin, S. Sampath and H. Wang: J. Am. Ceram. Soc. Vol. 92 (2009) p.710.

Google Scholar

[20] I. Sevostianov and M. Kachanov: J. Thermal Spray Technol. Vol. 18 (2009) p.822.

Google Scholar

[21] S. Zhu, B.S. Xu and J.K. Yao: Mater. Sci. Forum Vol. 475-479 (2005) p.3981.

Google Scholar

[22] X.C. Zhang, B.S. Xu, Y.X. Wu, F.Z. Xuan and S.T. Tu: App. Surf. Sci. Vol. 254 (2008) p.3879.

Google Scholar

[23] J.F. Coudert, M.P. Planche, O. Betoule, M. Vardelle and P. Fauchais, Proceedings of the 1993 National Thermal Spray Conference, Anaheim, CA, June 7–11, 1993, ASM International, Metals Park, OH, 1993, p.19.

Google Scholar

[24] X.C. Zhang, B.S. Xu, F.Z. Xuan, H.D. Wang, Y.X. Wu and S.T. Tu: J. Alloy. Compd. Vol. 467 (2009) p.501.

Google Scholar

[25] J.C. Fang, W.J. Xu, Z.Y. Zhao and H.P. Zeng: Surf. Coat. Technol. Vol. 201 (2007) p.5671.

Google Scholar

[26] H. Du, J. H. Shin and S. W. Lee: J. Thermal Spray Technol. Vol. 14 (2005) p.453.

Google Scholar

[27] A.D. Jadhav, N.P. Padture, E.H. Jordan, M. Gell, P. Miranzo and E.R. Fuller Jr: Acta Mater. Vol. 54 (2006) p.3343.

Google Scholar

[28] M. Prystay, P. Gougeon and C. Moreau: J. Thermal Spray Technol. Vol. 10 (2001) p.67.

Google Scholar

[29] L. Li, A. Vaidya, S. Sampath, H.B. Xiong and L.L. Zheng: J. Thermal Spray Technol. Vol. 15 (2006) p.97.

Google Scholar

[30] H.G. Jiang, M.L. Lau and E.J. Lavernia: Nanostructured Mater. Vol. 10(1998) p.169.

Google Scholar

[31] Y. Zeng, S. W. Lee, L. Gao and C. X. Ding: J. Eur. Ceram. Soc. Vol. 22 (2002) p.347.

Google Scholar

[32] R. Knight and R.W. Smith: Thermal Spray Forming of Materials, Powder Metal Technologies and Applications, Vol. 7, ASM Handbook, ASM International, 1998, P408-419.

Google Scholar

[33] H. Chen, Y. Zeng and C.X. Ding: J. Eur. Ceram. Soc. Vol. 23 (2003) p.491.

Google Scholar

[34] G. Trapaga and J. Szekely: Metall. Trans. Vol. B 22 (1991) p.901.

Google Scholar

[35] M. Bertagnolli, M. Marchese and G. Jacucci: J. Thermal Spray Technol. Vol. 4 (1994) p.41.

Google Scholar

[36] H. Liu, E.J. Lavemia and R.H. Rangel: J. Thermal Spray Technol. Vol. 2 (1993) p.369.

Google Scholar