Effect on Microstructure and Hardness of Plunger Piston of Fe-Based Composite Coating by Laser Cladding

Abstract:

Article Preview

The laser cladding of Fe power technology was used to repair worn plunger piston surface. The microstructure of cladding layer, binder course and the matrix were observed by OM and SEM. Besides, the micro-hardness of different zones was measured through micro-hardness testing. The results show that the matrix metal microstructure of plunger piston is made of ferrite and austenite. By laser cladding Fe-based power on base metal, the cladding layer grain is fine and uniform, grain growth has obvious direction and finally become dendrites oriented, the microstructure of cladding layer is both second-phase hard particles and Fe-based solutes. The combination between matrix and cladding layer is smooth, belong to metallurgy bonding. The hardness of cladding layer is higher than that of other parts in three parts, the max value of micro-hardness is about 1250HV, it can agree with wear resistance need of plunge piston surface.

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Edited by:

Zhengyi Jiang, Shanqing Li, Jianmin Zeng, Xiaoping Liao and Daoguo Yang

Pages:

830-833

DOI:

10.4028/www.scientific.net/AMR.189-193.830

Citation:

Y. T. Zhao et al., "Effect on Microstructure and Hardness of Plunger Piston of Fe-Based Composite Coating by Laser Cladding", Advanced Materials Research, Vols. 189-193, pp. 830-833, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.