The Dependence of the Corrosion Resistance of Ni-Cr-Mo-Cu Alloy to H2SO4 Solution on the 4Cr/ (2Mo+Cu)

Article Preview

Abstract:

The kinetics of corrosion process on Ni-Cr-Mo-Cu alloys designed by formula APF=4Cr/(2Mo+Cu) in H2SO4 solution have been investigated from the concentration of 0.002mol/cm3 to 0.012mol/cm3 at 20 . Analytical expressions for cathodic reaction were developed for the reduction of H+ and the reduction of oxygen. It is discussed that the corrosion resistance to H2SO4 solution depend on the APF in regular way.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

1912-1915

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Rebak R B. Nickel alloys for corrosive environments. Advanced Materials and Processes, Vol. 157(2000)p.37~42.

Google Scholar

[2] Yang Rui-cheng, Nie Fu-rong, Zheng Li-ping, Properties, Progression and Application of Ni-base Corrosion Resistant Alloys, Journal of Lanzhou University of Technology, Vol. 28(2002)29~33.

Google Scholar

[3] Wang Kai-xuan, Yang Rui-cheng, Lv Xue-fei, Zhao Li-mei, Nie Fu-rong, Development of Versatile Ni-base corrosion resistant alloy, Journal of Lanzhou University of Technology, Vol. 31(2005)pp.28-31.

Google Scholar

[4] K. Sugimoto, Y. Sawada, The role of molybdenum additions to austenitic stainless steels in the inhibition of pitting in acid chloride solutions, Corros. Sci. Vol. 17 (1977)p.425–445.

DOI: 10.1016/0010-938x(77)90032-4

Google Scholar

[5] J.N. Waklyn, The role of molybdenum in the crevice corrosion of stainless steels, Corros. Sci. Vol. 21 (1981)p.211–225.

DOI: 10.1016/0010-938x(81)90031-7

Google Scholar

[6] M.W. Tan, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto, The effect of air exposure on the corrosion behaviour of amorphous Fe–8Cr–Mo–13P–7C alloys in 1M HCl, Corros. Sci. Vol. 37 (1995)p.1289–1301.

DOI: 10.1016/0010-938x(95)00035-i

Google Scholar

[7] H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, The corrosion behaviour of amorphous Fe–Cr–Mo–P–C and Fe–Cr–W–P–C alloys in 6M HCl solution, Corros. Sci. Vol. 33 (1992)p.225–236.

DOI: 10.1016/0010-938x(92)90147-u

Google Scholar

[8] R F. A. Jargelius-Petterson, B. G. Pound. Examination of the role of molybdenum in passivation of stainless steels using AC impedance spectroscopy. J. Electrochem. Soc. Vol. 145 (1998)p.1462—1469.

DOI: 10.1149/1.1838505

Google Scholar

[9] J. R. Davis, Atmospheric and aqueous corrosion. in: J. R. Davis(Ed), ASM Speciality Handbook Stainless Steel, ASM International, Metals Park, OH, 1994, p.134.

Google Scholar

[10] M. Kamrunnahar, JianEr Bao, Digby D. Macdonald, Challenges in the theory of electron transfer at passive interfaces, Corrosion Science, Vol. 47(2005)pp.3111-3139.

DOI: 10.1016/j.corsci.2005.06.016

Google Scholar