Combined Manufacturing Process of Electrochemical-Etching and Electroplating on Nanoporous Silicon for its Metallization

Article Preview

Abstract:

In this work, a combined process for simultaneously manufacturing nanoporous silicon (NPS) and its metallization was present. The key point is the utilization of adjust electrolyte of silver nitrate and the electroplating timing after the NPS etching process. The current-control mode was used to prepare NPS membrane and the obtained pore-size and pillar-depth were about 0.5 μm and 140 μm, respectively. For clarify the metallization quality of studied process, the semiconductor analyzer was utilized to measured current-voltage (IV) characteristic. Compared to NPS with conventional electroplating process, the contact properties of fabricated sample would be effectively improved by the proposed method. The obtained IV characteristic of sample with combined process shows a larger turn-on current about 277 times than other samples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

393-396

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. T. Canham: Appl. Phys. Lett., vol. 57 (1990), p.1046.

Google Scholar

[2] A. G. Cullis, L. T. Canham and P. D. Calcott: J. Appl. Phys., vol. 82 (1997), p.909.

Google Scholar

[3] P. M. Fauchet: J. Lumin., vol. 70 (1996), p.294.

Google Scholar

[4] O. Bisi, S. Ossicine and L. Pavesi: Surf. Sci. Rep., vol. 38 (2000), p.1.

Google Scholar

[5] L. Dong, R. Yue and L. Liu: IEEE Microelectromech. Sys., vol. 14 (2005), p.1667.

Google Scholar

[6] F. Zacharatos, H. F. Contopanagos and A. G. Nassiopoulou: IEEE T-ED, vol. 56 (2009), p.2733.

Google Scholar

[7] G. Kaltsas, D. P. Pagonis and A. G. Nassiopoulou: J. Microelectromech. Sys., vol. 6 (2003), P. 863.

Google Scholar

[8] V. Aroutiounian, V. Arakelyan, V. Galstyam, K. Martiosyan and P. Soukiassian: IEEE Sens. J., vol. 9 (2009), p.9.

Google Scholar

[9] Y. Wang and John T. W. Yeow: IEEE Sens. J., vol. 9 (2009), p.541.

Google Scholar

[10] R. E. Fernandez, S. Stolyarova, A. Chadha, E. Bhattacharya and Y. Nemirovsky: IEEE Sens. J., vol. 9 (2009), p.1663.

Google Scholar

[11] T. Karacali, M Alanyalioglu and H. Efeoglu: IEEE Sens. J., vol. 9 (2009), p.1667.

Google Scholar

[12] L. T. Chanham, W. Y. Leong, T. I. Cox and L. Taylor: Appl. Phys. Lett., vol. 61 (1992), p.2563.

Google Scholar

[13] H. D. Fuchs, M. Stutzmann, M. S. Brandt, M. Rosenbauer, J. Weber, A. Breitschwerdt, P. Deak and M. Cardona: Phys. Rev. vol. B48 (1993), p.8172.

DOI: 10.1103/physrevb.48.8172

Google Scholar

[14] J. Sarathy, S. Shih, K. H. Jung, C. Tsai, K. H. Li, D. L. Kwong and J. C. Campbell: Appl. Phys. Lett., vol. 60 (1992), p.1532.

Google Scholar

[15] S. Kalem and M. Rosenbauer: Appl. Phys. Lett., vol. 67 (1995), p.2551.

Google Scholar

[16] S. Klem and O. Yavuzcetin: Opt. Exp., vol. 6 (2000), p.7.

Google Scholar

[17] M. Ghanashyam Krishna, M. Rajendran, D. R. Pyke, A. K. Bhattacharya: Solar Energy Mater. Solar Cells (1999), vol. 59, p.377.

DOI: 10.1016/s0927-0248(99)00049-5

Google Scholar

[18] D. Andsager, J. Hillard, J. M. Hetrick, L. H. Abuhassan, M. plisch and M. H. Nayfeh: J. Appl. Phys., vol. 74 (1993), p.4783.

Google Scholar

[19] W. Lang, P. Steiner and F. Kozlowski: J. Lumin., vol. 57 (1993), p.341.

Google Scholar

[20] J. C. Lin, W. C. Tsai and W. S. Lee: Nanotechnol., vol. 17 (2006), p.2968.

Google Scholar