Influences of Nd3+ Ions Substitution on the Structure and Electromagnetic Properties of the Nanocrystalline Co0.5Zn0.5Fe2O4 Ferrite

Article Preview

Abstract:

The spinel nanocrystalline Co0.5Zn0.5Nd0.05Fe1.95O4 ferrite was prepared by polyacrylamide gel method. Influences of Nd3+ ions substitution on the microstructural and electromagnetic properties for the Co0.5Zn0.5Fe2O4 ferrites had been systematically investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and wave-guide method. The results showed that the Nd3+ ions can replace Fe3+ ions and adjust lattice parameters. The average size of the Co0.5Zn0.5Fe2O4 and Co0.5Zn0.5Nd0.05Fe1.95O4 particles were identified to be about 50nm and 60nm by TEM, respectively. The complex permittivity (=ε′-jε″) and complex permeability (=μ′-jμ″) for the composites had been measured in the frequency range of 8.2-12.4GHz. The results showed that the Co0.5Zn0.5Fe2O4 and Co0.5Zn0.5Nd0.05Fe1.95O4 ferrites had both dielectric loss and magnetic loss. The dielectric loss tangent (tgδε) and magnetic loss tangent (tgδm) for the Co0.5Zn0.5Nd0.05Fe1.95O4 ferrite were obviously higher than those of the Co0.5Zn0.5Fe2O4. The maximal value of tgδε and tgδm for the Co0.5Zn0.5Nd0.05Fe1.95O4 ferrite was around 0.30 at 12.4GHz and 0.16 at 10.8GHz, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

524-528

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Limura, T. Kato, T. Hyodo, Y. Shimizu and M. Egashira. J. Magn. Magn. Mater. Vol. 312 (2007), p.181.

Google Scholar

[2] K. H. Wu, W. C. Huang, G. P. Wang and T. R. Wu. Mater. Res. Bull. Vol. 40 (2005), p.1822.

Google Scholar

[3] R. Dosoudil, M. Usakova, J. Franek, J. Slama and V. Olah. J. Magn. Magn. Mater. Vol. 304 (2006), p.755.

Google Scholar

[4] S. M. Abbas, A. K. Dixit, R. Chatterjee and T. C. Goel. J. Magn. Magn. Mater. Vol. 309 (2007), p.20.

Google Scholar

[5] L. Z. Fang, R. Z. Gong and J. H. Guan. Acta Physico-Chimica Sinica. Vol. 4 (2001), p.364.

Google Scholar

[6] G. Nutan, A. Verma, S. C. Kashyap and D. C. Dube. Solid State Commun. Vol. 134 (2005), p.689.

Google Scholar

[7] M. A. Ahmed, E. Ateia and S. I. El-Dek. Mater. Lett. Vol. 57 (2003), p.4256.

Google Scholar

[8] G. L. Sun, J. B. Li, J. J. Sun and X. Z. Yang. J. Magn. Magn. Mater Vol. 281 (2004), p.173.

Google Scholar

[9] L. J. Zhao, H. Yang and X. P. Zhao. Mater. Lett. Vol. 60 (2006), p.1.

Google Scholar

[10] D. T. Pham, R. Guus and H. A. B. Dave. J. Magn. Magn. Mater Vol. 295 (2005), p.251.

Google Scholar

[11] L. Gama, A. P. Diniz, A. C. F. M. Costa, S. M. Rezende, A . Azecedo and D. R. Cornejo. Physica B, Vol. 384 (2006), p.97.

Google Scholar

[12] Z. F. Zhong, Q. Li and Y. L. Zhang. Powder Technol. Vol. 155 (2005), p.193.

Google Scholar

[13] G. Z. Shen, Z. Xu and Y. Li. J. Magn. Magn. Mater Vol. 301. 2006, p.325.

Google Scholar