Preparation and Photoluminescence Properties of Tadpole-Like Amorphous Silica Nanowires

Article Preview

Abstract:

Tadpole-like microstructures which consisted of silica nanowires have been synthesized on Si wafers at 950°C by using tin droplets as catalyst. Each tin droplet can simultaneously catalyzes the growth of many silica nanowires of each tadpole-like microstructure and can simultaneously catalyzes the growth of even two tadpole-like microstructures, which is quite different from the conventional vapor-liquid-solid process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show that the tadpole-like microstructures with diameters of 5 μm and lengths of up to 50-100 μm. The amorphous silica nanowires with a composition close to that of SiO2 have diameters of 100–200 nm. The PL spectra of the SiO2 nanowires shows a strong emission peak centered at 390 nm (3.18 eV), while two weak PL peaks at 323 nm (3.84 eV), and 455 nm (2.73 eV) can also be observed. The growth mechanism of the tadpole-like microstructures was also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

614-617

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. L. Wang, Z. Dai and S. Sun: Advanced Materials Vol. 12 (2000), p. (1944).

Google Scholar

[2] A. Katz and M. E. Davis: Nature Vol. 403 (2000), p.286.

Google Scholar

[3] C. Themistos, M. Rajarajan, B.M.A. Rahman and K.T.V. Grattan: Journal of Lightwave Technology Vol. 27 (2009), p.5537.

DOI: 10.1109/jlt.2009.2026655

Google Scholar

[4] L.P. Davila, V.J. Leppert and E.M. Bringa: Scripta Materialia Vol. 60 (2009), p.843.

Google Scholar

[5] K. Liu, Q.M. Feng, Y.X. Yang, G.F. Zhang, L.M. Ou and Y.P. Lu: Journal of Non-Crystalline Solids Vol. 353 (2007), p.1534.

Google Scholar

[6] R.S. Wagner and W.C. Ellis. Applied Physics Letters Vol. 4 (1964), p.89.

Google Scholar

[7] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong and S. Q. Feng: Applied Physics Letters Vol. 73 (1998), p.3076.

Google Scholar

[8] C. H. Liang, L. D. Zhang, G. W. Meng, Y. W. Wang and Z. Q. Chu: Journal of Non-Crystalline Solids Vol. 277 (2000), p.63.

Google Scholar

[9] S.H. Sun, G.W. Meng, T. Gao, M.G. Zhang, Y.T. Tian, X.S. Peng, Y.X. Jin, and L.D. Zhang: Applied Physics A Vol. 76 (2003), p.999.

Google Scholar

[10] B. Zheng, Y. Y. Wu, P. D. Yang and J. Liu: Advanced Materials Vol. 14 (2002), p.122.

Google Scholar

[11] Z. W. Pan, Z. R. Dai, C. Ma and Z. L. Wang: Journal of American Chemical Society Vol. 124 (2002), p.1817.

Google Scholar

[12] Y. Q. Zhu,W. K. Hsu and M. Terrones: Chemistry of Materials Vol. 11 (1999), p.2709.

Google Scholar

[13] Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, W. B. Hu, J. P. Hare, H. W. Kroto and D. R. M. Walton: Journal Materials Chemistry Vol. 8 (1998), p.1859.

Google Scholar

[14] X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y.P. Sun and J.J. Du: Chemical Physics Letters Vol. 336 (2001), p.53.

Google Scholar

[15] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu,Y.P. Wang, J. Xu, Z.H. Xi and S.Q. Feng: Chemical Physics Letters Vol. 323 (2000), p.224.

Google Scholar

[16] Y.J. Xing, Q.L. Hang, H.F. Yan, H.Y. Pan, J. Xu, D.P. Yu, Z.H. Xi, Z.Q. Xue and S.Q. Feng: Chemical Physics Letters Vol. 345 (2001), p.29.

Google Scholar