Rapid Preparation of V2O3 and VN Nanocrystals by Ammonolysis of the Precursor VOC2O4•H2O

Article Preview

Abstract:

V2O3 and VN nanocrystals have been conveniently synthesized from thermal ammonolysis of the precursor VOC2O4•H2O in a resistance tubular furnace at 500°С and 780°С for 30 min, respectively. The products were characterized by X-ray diffractometer (XRD)、X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. The average particle sizes of V2O3 and VN are both in the ranges of 20~35 nm. The evolution from precursor to hexagonal V2O3 and then to cubic VN was explored. The crucial factors,such as the reaction temperature and time,have also been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

660-664

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Held, G. Keller, V. Eyert and V. I. Anisimov: Phys. Rev. Lett. Vol. 86 (2001), p.5345.

Google Scholar

[2] P.A. Chudnovskii, V.N. Andreev, V.S. Kuksenko, V.A. Piculin and D.I. Frolov: J. Solid. State. Chem. Vol. 133 (1997), p.430.

DOI: 10.1006/jssc.1997.7503

Google Scholar

[3] C.S. Sundar, A. Bharathi and Y. Hariharan: J. Alloys. Compd. Vol. 326 (2001), p.105.

Google Scholar

[4] I. Czekaj, M. Witko and K. Hermann: Surf. Sci. Vol. 525 (2003), p.46.

Google Scholar

[5] R.H. Kokbi, M. Rapeaur, A.J. Ayma and G. Desgardin: Mater. Sci. Eng. B Vol. 38 (1996), p.80.

Google Scholar

[6] A. Rfiegg, R.S. Perkins and P. Streit: Sci. Ceram. Vol. 11 (1981), p.559.

Google Scholar

[7] G.C. Bond and M.A. Duarte: J. Catalysis. Vol. 111 (1988), p.189.

Google Scholar

[8] L.G. Vader: J. Catal. Vol. 98 (1986), p.522.

Google Scholar

[9] R.J. Sullivan, T.T. Srinivasan and R. Newnham: J. Am. Ceram. Soc. Vol. 73 (1990), p.3715.

Google Scholar

[10] A.I. Frenkel, E.A. Stern and F.A. Chudnovsky: Solid. State. Commun. Vol. 102 (1997), p.637.

Google Scholar

[11] F. Sediri and N. Gharbi: Mater Sci Eng B. Vol. 123 (2005), p.136.

Google Scholar

[12] I. Galesic and B.O. Kolbesen: Thin. Solid. Films. Vol. 349 (1999), p.14.

Google Scholar

[13] D.A. Papaco, W.E. Pickett, B.M. Klein and L.L. Boyer: Phys. Rev. B. Vol. 31 (1985), p.752.

Google Scholar

[14] F. Levy, P. Hones, P.E. Schmid, R. Sanjines, M. Diserens and C. Wiemer: Surf. Coatings. Tech. Vol. 120-121 (1999), p.284.

Google Scholar

[15] P.S. Herle, M.S. Hegde and S. Philip: J. Solid. State. Chem. Vol. 134 (1997), p.120.

Google Scholar

[16] P.K. Tripathy, J.C. Sehra and A.V. Kulkarni: J. Mater. Chem. Vol. 11 (2001), p.691.

Google Scholar

[17] N.S. Gajbhiye and R.S. Ningthoujam: Mater. Res. Bull. Vol. 41 (2006), p.1612.

Google Scholar

[18] P.J. Cai, Z. H Yang, C.Y. Wang, P. Xia and Y.T. Qian: Mater. Lett. Vol. 60 (2006), p.410.

Google Scholar

[19] C.H. Yong, H.S. Dong and U.S. Han: Mater. Chem. Phy. Vol. 101 (2007), p.35.

Google Scholar

[20] W.G. Huang, H. Lin, J.Q. Fang, M.J. Tu, Invention Patent of China. NO. 200510020790. 0.

Google Scholar

[21] J. Mendialdua, R. Casanova and Y. Barbaux: J. Electron. Spectros. Relat. Phenomena. Vol. 71 (1995), p.249.

Google Scholar

[22] S. Pinto, L. D'Ornelas and P. Betancourt: Appl. Surf. Sci. Vol. 254 (2008), p.5390.

Google Scholar

[23] G. Silversmit, D. Depla, H. Poelman, G.B. Marin and R.D. Gryse: J. Electron. Spectros. Relat. Phenomena. Vol. 135 (2004), p.167.

Google Scholar

[24] A. Glaser, S. Surnev, F.P. Netzer and C. Mitterer: Surf. Sci. Vol. 601 (2007), p.1153.

Google Scholar