Hydrothermal Synthesis and Characterization of Novel MoS2 Nanoflowers Directed by Ionic Liquid

Article Preview

Abstract:

MoS2 with rose-like morphology have been successfully synthesized using by an ionic liquid-directed hydrothermal synthesis. XRD results showed that the as-prepared MoS2 directed by ionic liquid Brij56 have the good peaks. SEM images revealed that the MoS2 nanoflowers had rose-like morphology composed of many stacked sheets. TEM images showed that MoS2 nanoflowers have incompactly petal-like stacked structure. These results showed that ionic liquid Brij56 could effectively influence the morphology of MoS2. Ionic liquid played a crucial role as a structure-directed reagent in the formation of MoS2 nanoflowers and the possible growth mechanism of MoS2 nanoflowers was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

785-789

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.A. Toledo-Antonio, M.A. Cortes-Jacome, C. Angeles-Chavez, J. Escobar, M.C. Barrera and E. Lopez-Salinas: Applied Catalysis B: Environmental Vol. 90 (2009), p.213.

DOI: 10.1016/j.apcatb.2017.05.011

Google Scholar

[2] Y. Tian, J. Zhao, W. Fu, Y. Liu, Y. Zhu and Z. Wang: Mater. Lett. Vol. 59 (2005), p.3452.

Google Scholar

[3] S.E. Skrabalak, K.S. Suslick: J. Am. Chem. Soc. Vol. 127 (2005), p.9990.

Google Scholar

[4] N.A. Dhas, K.S. Suslick: J. Am. Chem. Soc. Vol. 127 (2005), p.2368.

Google Scholar

[5] R.H. Wei, H.B. Yang, K. Dua, W.Y. Fua, Y.M. Tian, Q.J. Yu, S.K. Liu, M.H. Li and G.T. Zou: Mater. Chem. Phys. Vol. 108 (2008), p.188.

Google Scholar

[6] F.L. Deepak, A. Mayoral and M.J. Yacaman: Mater. Chem. Phys. Vol. 118 (2009), p.392.

Google Scholar

[7] Z.Z. Wu, D.Z. Wang, X. Liang and A.K. Sun: J. Crys. Growth Vol. 312 (2010), p. (1973).

Google Scholar

[8] H.T. Lin, X.Y. Chen, H.L. Li, M. Yang and Y.X. Qi: Mater. Lett. Vol. 64 (2010), p.1748.

Google Scholar

[9] T. Andreas: Angew. Chem. Int. Ed. Engl. Vol. 43 (2004), p.5380.

Google Scholar

[10] Y. Jiang, Y.J. Zhu and G.F. Cheng: Cryst. Growth Des. Vol. 6 (2006), p.2174.

Google Scholar

[11] P. Salinas-Estevan, E.M. Sanchez: Cryst. Growth. Des. Vol. 10( 9) (2010), p.3917.

Google Scholar

[12] L. Ge, X.Y. Jing, J. Wang, S. Jamil, Q. Liu, D.L. Song, J. Wang, Y. Xie, P.P. Yang and M.L. Zhang: Cryst. Growth. Des. Vol. 10(4) (2010), p.1688.

Google Scholar

[13] L. Ma, W.X. Chen, H. Li, Y.F. Zheng and Z.D. Xu: Mater. Lett. Vol. 62 (2008), p.797.

Google Scholar

[14] H.T. Luo, X.Y. Chen, H.L. Li, Min Yang and Y.X. Qi: Mater. Lett. Vol. 62 (2008), p.3558.

Google Scholar

[15] H. Farag , A.N.A. El-Hendawy, K. Sakanishi, M. Kishida and I. Mochida: Applied Catalysis B: Environmental Vol. 91 (2009), p.189.

DOI: 10.1016/j.apcatb.2009.05.023

Google Scholar

[16] J. Jiang, S.H. Yu, W.T. Yao, H. Ge and G.Z. Zhang: Chem. Mater. Vol. 17 (2005), p.6094.

Google Scholar

[17] P. Salinas-Estevane, E.M. Sanchez: Cryst. Growth. Des. Vol. 10(2010), p.3917.

Google Scholar

[18] Q.S. Huo, D.I. Margolese, U. Ciesla, P. Feng, T. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schuth and G. D Stucky: Nature Vol. 368 (1994), p.317.

DOI: 10.1038/368317a0

Google Scholar

[19] B. Dong, T. Xue, C.L. Xu and H.L. Li: Microporous & Mesoporous Materials Vol. 112 (2008), p.627.

Google Scholar