Synthesis and Characterization of an Aminated D-Glucose and its Stability of Cu2+Complex

Article Preview

Abstract:

An aminated D-glucose [N,N'-di-b-D-glucopyranosyl ethylenediamine] was prepared and thoroughly characterized by FT-IR, ESI-MS, NMR spectra and elemental analysis. Compared with D-glucose, the FT-IR spectrum of the aminated glucose showed a moderate peak at 1629~1608 cm-1 which was attributed to dNH vibration, suggesting glucose reacted to ethylenediamine (en). The ESI-MS spectrum exhibited a strong peak at m/z 383.2, which was assigned to the species [C14H27O10N2]-. The 1H-NMR spectrum of the aminated D-glucose demonstrated the signal of the C1 proton and the amino proton at 4.82~4.79ppm, illustrating the amino of ethylenediamine was substituted for the hydroxy group of C1. As for UV spectra, the aminated glucose hadn’t absorbance in the ultraviolet region while its complex with Cu2+ had obvious absorption peak at about 236nm. The complex ratio of the aminated glucose to Cu2+ was close to 1:1 and the stability constant of its Cu2+ complex was 6.8*107 in 0.01mol×L-1 borax buffer solution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

65-68

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. B. Carolyn and L. K Laura: Science Vol. 291(2001), p.2357.

Google Scholar

[2] L. Nagy and A. Szorcsik: J. Inorg. Biochem. Vol. 89(2002), p.1.

Google Scholar

[3] H. Whilm-Christian, N. Martin and H. D. Karl: Organomet. Chem. Vol. 684(2003), p.153.

Google Scholar

[4] J. Costamagna, L. E. Lillo, B. Matsuhiro, M. D. Noseda and M. Villagran: Carbohydr. Res. Vol. 338(2003), p.1535.

Google Scholar

[5] S. Yano, M. Kato, H. Shioi, T. Takahashi, T. Tsubomura, K. Toriumi, T. Ito, M. Hidai, and S. Yoshikawa: Dalton Trans. Vol. 11(1993), p.1699.

DOI: 10.1039/dt9930001699

Google Scholar

[6] T. Tanase, M. Doi, R. Nouchi, M. Kato, Y. Sato, K. Ishida, K. Kobayashi, T. Sakurai, Y. Yamamoto and S. Yano: Inorg. Chem. Vol. 35(1996), p.4848.

Google Scholar

[7] K. Ishida, S. Nonoyama, T. Hirano, S. Yano, M. Hidai and S. Yoshikawa: J. Am. Chem. Soc. Vol. 11(1989), p.1599.

Google Scholar

[8] R. P. Bandwar and C. P. Rao: Carbohydr. Res. Vol. 287(1996) , p.157.

Google Scholar

[9] S. L. Sun, A. Q. Wang and Y. C. Gao: Spectro. Spectr. Anal. Vol. 25(2005), p.374 (In Chinese).

Google Scholar

[10] S. Mathur and S. Tabassum: Chemistry & Biodiversity, Vol. 3(2006), p.312.

Google Scholar

[11] J. Ø. Duus, C. H. Gotfredsen and K. Bock: Chem. Rev. Vol. 100(2000), p.4589.

Google Scholar

[12] S. Yano, S. Inoue, Y. Yasuda, T. Tanase, Y. Mikata, T. Kakuchi, T. Tsubomura, M. Yamasaki, I. Kinoshita and M. Doe: Dalton Trans. Vol. 11(1999), p.1851.

DOI: 10.1039/a901475f

Google Scholar

[13] S. Yano and Y. Mikata, Bull. Chem. Soc. Jpn. Vol. 75(2002), p. (2097).

Google Scholar

[14] J. G. Gao, J. Zhou, F. Sheng, L. Fu and J. M. Wang: Chin. J. Anal. Chem. Vol. 30(2002), p.594 (In Chinese).

Google Scholar