β‘ Phase Precipitation in a Cold Rolled Cu-Zn Alloy under Electric Current Pulses

Article Preview

Abstract:

β' phase precipitation in a cold rolled Cu-Zn alloy under high density electric current pulses was studied in the present work. The results showed that the precipitation of β' phase was controlled by the angle between the current direction and rolling direction. When the angle was 45º, the application of electric current could refine α phase without β' phase precipitation, while at 0º or 90º, β' phase precipitated from α phase boundaries and distributed along the rolled direction. It was proposed that the precipitation of β' phase during the application of high density electric current was determined by the electron wind force and anisotropic electrical resistivity of the grain boundaries.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

692-695

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Conrad: Mater. Sci. Eng A Vol. 287 (2000), p.227.

Google Scholar

[2] Y. Onodera, and K. I. Hirano: J. Mater. Sci. Vol. 11 (1976), p.809.

Google Scholar

[3] M. Shine, and S. Herd: Appl. Phys. Lett. Vol. 20 (1972), p.217.

Google Scholar

[4] T. Koppenaal, and C. Simcoe: Trans. Met. Soc. AIME Vol. 227 (1963), p.615.

Google Scholar

[5] Y. Onodera, and K. I. Hirano: J. Mater. Sci. Vol. 19 (1984), p.3935.

Google Scholar

[6] Y. Z. Zhou, J. D. Guo, W. Zhang, and G. H. He: J. Mater. Res. Vol. 17 (2002), p.3012.

Google Scholar

[7] X. L. Wang, Y. B. Wang, Y. M. Wang, B. Q. Wang, and J. D. Guo: Appl. Phys. Lett. Vol. 91 (2007), p.163112.

Google Scholar

[8] T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak: Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, OH, 1990).

Google Scholar

[9] S. Antolovich, and H. Conrad: Mater. Manu. Pro. Vol. 19 (2004), p.573.

Google Scholar

[10] J. Gil Sevillano, P. van Houtte, and E. Aernoudt: Prog. Mater. Sci. Vol. 25 (1982), p.69.

Google Scholar

[11] P. S. Ho, and T. Kwok: Rep. Prog. Phys. Vol. 52 (1989), p.301.

Google Scholar

[12] H. Conrad, and A. F. Sprecher: in Dislocations in Solids, edited by F.R.N. Nabarro (Elsevier Science Publishers, Amsterdam, The Netherlands, 1989).

Google Scholar

[13] Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, and G.Y. Tang: Mater. Sci. Eng. A Vol. 501 (2009), p.125.

Google Scholar

[14] R. A. Brown: J. Phys. F. Metal. Phys. Vol. 7 (1977), p.1477.

Google Scholar

[15] L. Uray: J. Mater. Sci. Lett. Vol. 10 (1991), p.1409.

Google Scholar

[16] M. B. Diaz, W. Koch, C. Habler, and H. -G. Brautigam: Solar Energy Materials & Solar Cells Vol. 72 (2002), p.473.

Google Scholar