Mg-Ni-H Hydrogen Storage System Prepared by Controlled Hydriding Combustion Synthesis

Article Preview

Abstract:

The Mg2NiH4 hydrogen storage material was successfully prepared by controlled hydriding combustion synthesis (CHCS) from Mg and Ni powders in a high magnetic field. The effects of magnetic intensity on the structure, phase compositions and the hydriding/dehydriding (A/D) properties of the composite are investigated. As a result, a high magnetic field promotes the formation of Mg2NiH4. The PCT results show that the maximal hydrogen capacity at 573 K is 3.59 wt.%. The comparison of the hydrogen A/D results under the different conditions suggested that 4 T is the optimal magnetic intensity in our trial.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

749-752

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. J. Reilly, R. H. Wiswall. Inorg. Chem., 7 (1968) 2254-6.

Google Scholar

[2] G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz. J. Alloys Compd., 282 (1999) 286-90.

Google Scholar

[3] Y. S. Zhang, H. B. Yang , H. T. Yuan, E. D. Yang, Z. X. Zhou, D. Y. Song. J. Alloys Compd., 269 (1998) 278-83.

Google Scholar

[4] H. Y. Shao, H. R. Xu, Y. T. Wang, X. G. Li. Nanotechnology, 15 (2004) 269-74.

Google Scholar

[5] T. T. Ueda, M. Tsukahara, Y. Kamiya, S. Kikuchi. J. Alloys Compd., 386 (2005) 253-7.

Google Scholar

[6] H. T. Yuan, H. B. Yang, Z. X. Zhou, D. Y. Song, Y. S. Zhang. J. Alloys Compd., 260 (1997) 256-9.

Google Scholar

[7] T. Akiyama, H. Isogai, J. Yagi. Powder Technol., 1998, 95: 175-81.

Google Scholar

[8] X. F. Liu, Y. F. Zhu, L. Q. Li. Intermetallics, 2007, 15: 1582-8.

Google Scholar

[9] Q. Li, K. C. Chou, K. D. Xu, L. J. Jiang, Q. Lin, G. W. Lin, X. G. Lu, J. Y Zhang. Int. J. Hydrogen Energy, 31 (2006) 497-503.

Google Scholar

[10] I. Yamamoto, M. Yamaguchi, T. Goto, S. Miura. J. Alloys Comp., 231 (1995) 205-7.

Google Scholar

[11] M. Fujino, I. Yamamoto, M. Yamaguchi, T. Goto, S. Miura. J. Alloys Comp., 231 (1995) 631-4.

Google Scholar

[12] M. Yamaguchi, I. Yamamoto, F. Ishikawa, T. Goto, S. Miura. J. Alloys Comp., 253–254 (1997) 191-4.

Google Scholar

[13] M. Yamaguchi, I. Yamamoto, S. Mizusaki, K. Ishikawa. J. Alloys Comp., 330-332 (2002) 48-51.

Google Scholar

[14] Q. Li, X. G. Lu, K. C. Chou, K. D. Xu, J. Y. Zhang, S. L. Chen. Int. J. Hydrogen Energy, 32 (2007) 1875 -84.

Google Scholar

[15] Q. Li, J. Liu, K. C. Chou, G. W. Lin, K. D. Xu. J. Alloys Compd., 466 (2008) 146-52.

Google Scholar

[16] L. Q. Li , I. Saita , K. Saito , T. Akiyama. J. Alloys Compd., 345 (2002) 189-95.

Google Scholar