Calcination Temperature Influence on the Microstructure and the Photocatalytic Properties of TiO2 Pillared Rectorite

Article Preview

Abstract:

TiO2 pillared rectorite (TPLR) had been synthesized by sol-gel method, and was characterized by XRD, TEM, BET, UV-vis DRS and FTIR. The effects of calcination temperature on the microstructure and the photocatalytic activity of the as prepared catalyst were investigated. The photocatalytic activity of the catalyst was evaluated by decomposition of Acid Red B (ARB) aqueous solution. XRD patterns revealed that TiO2 is incorporated into the interlayer of the rectorite. TEM demonstrated that TiO2 particles are present in the rectorite. The BET analysis indicated that the surface area of the sample calcined at 300°C (TPLR-300) was larger than those of other samples. The TPLR samples had high adsorption capacity and good photocatalytic efficiency in decomposition of ARB in water. FTIR spectra of the original and the recovered samples indicated that the catalyst had not chemically changed during the photocatalytic reaction.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 197-198)

Pages:

790-795

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima and K. Honda: Nat. 238 (1972), p.37.

Google Scholar

[2] X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie and L.S. Zheng: J. Am. Chem. Soc. 131 (2009), p.3152.

Google Scholar

[3] S. U. M. Khan, M. Al-Shahry, W. B. Ingler: Science, 297 (2002), p.2243.

Google Scholar

[4] K.L. Lv, J.G. Yu, K.J. Den, X.H. Li and M. Li: J. Phys. Chem. Solids 71 (2010), p.519.

Google Scholar

[5] Z. Ding, H. Y. Zhu, G. Q. Lu and P.F. Greenfield: J. Colloid Inter. Sci. 209 (1999), p.193.

Google Scholar

[6] T.L. Thompson and J.T. Yates, Jr.: Chem. Rev. 106 (2006), p.4428.

Google Scholar

[7] J. G Yu, X.J. Zhao and Q.N. Zhao: Thin Solid Films, 379 (2000), p.7.

Google Scholar

[8] C. Byun, J.W. Jang, I.T. Kim, K.S. Hong and B.W. Lee: Mater. Res. Bull. 32 (1997), p.431.

Google Scholar

[9] K. Ichiharu, T. Osamu, K. Toyoharu, H. Kaname and K. Akira: J. Vac. Sci. Technol. A 12 (1994), p.169.

Google Scholar

[10] S. Yamaguchi, H. Kobayashi , T. Narita, K. Kanehira, S. Sonezaki, Y. Kubota, S. Terasaka and Y. Iwasaki: Photochem. Photobiol. 86 (2010), p.964.

DOI: 10.1111/j.1751-1097.2010.00742.x

Google Scholar

[11] K. Mogyorosi, A. Farkas, I. Dekany, I. Ilisz and A. Dombi: Environ. Sci. Technol. 36 (2002), p.18.

Google Scholar

[12] J. Sterte: Clay Clay Miner. 34 (1986), p.658.

Google Scholar

[13] A. Gil, H.L. Del Castillo, J. Masson, J. Court and P. Grange: J. Mol. Catal. A: Chem. 107 (1996), p.185.

Google Scholar

[14] C. Ooka, H. Yoshida, M. Horio, K. Suzuki and T. Hattori: Appl. Catal. B: Environ. 41 (2003), p.313.

Google Scholar

[15] G.K. Zhang, Y.Y. Gao, Y.L. Zhang and Y.D. Guo: Environ. Sci. Technol. 44 (2010), p.6384.

Google Scholar

[16] S. Tawkaew, S. Yin and T. Sato: Inter. J. Inorg. Mater. 3 (2001), p.855.

Google Scholar

[17] M. Yanagisawa and T. Sato: Solid State Ionics. 141-142 (2001), p.575.

Google Scholar

[18] J.L. Valverde , P. Sanchez , F. Dorado, C. B. Molina and A. Romero: Micropor. Mesopor. Mate. 54 (2002), p.155.

Google Scholar

[19] X.Z. Bu, G.K. Zhang, Y.Y. Gao and Y.Q. Yang: Micropor. Mesopor. Mater. 136 (2010), p.132.

Google Scholar

[20] D.L. Sun and L.G. Jiang: Ion Exchange and Adsorption, 12, 6 (1996), p.542.

Google Scholar

[21] E. Manova, P. Aranda, M.A. Martin-Luengo, S. LetaIef and E. Ruiz-Hitzky: Micropor. Mesopor. Mater. 131 (2010), p.252.

Google Scholar

[22] H. Yoneyama, S. Hagaon and S. Yamanaka: J. Phys. Chem. 93 (1989), p.4833.

Google Scholar