[1]
R. Alen, R. Kotulaninen, A. Zaman. Thermochemical behavior of Norway spruce (Picea abies) at 180-225℃. Wood Sci. Technol. 36: 163-171. (2002).
DOI: 10.1007/s00226-001-0133-1
Google Scholar
[2]
P. Bekhta and P. Niemz. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57: 539-546. (2003).
DOI: 10.1515/hf.2003.080
Google Scholar
[3]
M.J. Boonstra, J.V. Acker, E. Kegel, et al. Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci. Technol. 41: 31-57. (2007).
DOI: 10.1007/s00226-006-0087-4
Google Scholar
[4]
R.M. Rowell, R.E. Ibach, J. Mcsweeny, et al. Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood material science and engineering 1-2: 14-22. (2009).
DOI: 10.1080/17480270903261339
Google Scholar
[5]
W.C. Feist and J. Sell. Weathering behavior of dimensionally stabilized wood treated by heating under pressure of nitrogen gas. Wood and Fiber Science 19(2): 183-195. (1987).
Google Scholar
[6]
O. Unsal and N. Ayrilmis. Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. J. Wood Sc. 51: 405-409. (2005).
DOI: 10.1007/s10086-004-0655-x
Google Scholar
[7]
S. Korkut. The effect of heat treatment on some technological properties in Uludag fir (Abies borumuellerinana Mattf. ) wood. Building and environment 43: 422-428. (2008).
DOI: 10.1016/j.buildenv.2007.01.004
Google Scholar
[8]
M. Petrissans, P. Gerardin, I. Elbakali, et al. Wettability of heat-treated wood. Holzforchung 57: 301-307. (2003).
Google Scholar
[9]
M. Hakkou, M. Petrissans, I.E. Bakali, et al. Wettability changes and mass loss during heat treatment of wood. Holzforschung 59: 35-37. (2005).
DOI: 10.1515/hf.2005.006
Google Scholar
[10]
S.M. Kortelainen, T. Antikainen and P. Viitaniemi. The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170, 190, 210 and 230℃. Holz als Roh- und Werkstoff 64: 192–197. (2006).
DOI: 10.1007/s00107-005-0063-y
Google Scholar
[11]
P. Rousset, P. Perre and P. Girard. Modification of mass transfer properties in polar wood (P. robusta) by a heat treatment at high temperature. Holz Roh-und Werkstoff 62: 113-119. (2004).
DOI: 10.1007/s00107-003-0459-5
Google Scholar
[12]
B. Sundqvist. Color response of Scots pine (Pinus syvestris), Norway spruce (Picea abies) and birch (Betula pubescens) subjected to heat treatment in capillary phase. Holz als Roh- und Werkstoff 60: 106-114. (2002).
DOI: 10.1007/s00107-001-0273-x
Google Scholar
[13]
C. Brischke, C.R. Welzbacher, K. Brandt, et al. Quality control of thermally modified timber: interrelationship between heat treatment intensities and CIE L*a*b* color data on homogenized wood samples. Holzforschung 61: 19-22. (2007).
DOI: 10.1515/hf.2007.004
Google Scholar
[14]
K. Mitsui, A. Murata, Tolvaj. Changes in the properties of light-irradiated wood with heat treatment: Part 3. Monitoring by DRIFT spectroscopy. Holz Roh Werkst 62: 164-168. (2004).
DOI: 10.1007/s00107-004-0476-z
Google Scholar
[15]
B.F. Tjeerdsma, M. Boonstra, A. Pizzi, et al. Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz als Roh-und Werkstoff 56: 149-153. (1998).
DOI: 10.1007/s001070050287
Google Scholar
[16]
K. Mitsui, H. Takada, M. Sugiyama, et al. Changes in the properties of light-irradiated wood with heat treatment: Part 1 Effect of treatment conditions on the change in color. Holzforchung 55: 601-605. (2001).
DOI: 10.1515/hf.2001.098
Google Scholar
[17]
D. Kocaefe, S. Poncsak, G. Dore, et al. Effect of heat treatment on wettability of white ash and soft maple by water. Holz Roh Werkst 66: 355-361. (2008).
DOI: 10.1007/s00107-008-0233-9
Google Scholar