A Novel Hydrogenation and Hydrogenolysis Catalyst Using Palladized Biomass of Gram-negative and Gram-positive Bacteria

Article Preview

Abstract:

Palladized biomass of typical Gram negative bacteria (Desulfovibrio desulfuricans and Escherichia coli) is well documented as a potentially useful catalyst for reduction of metallic species such as Cr(VI). This bionanocatalyst can be sourced from Pd-waste and scrap leachates via biocrystallization. A major industrial application of precious metal catalysts is in hydrogenation and hydrogenolysis reactions whereby, respectively, H is added across unsaturated bonds and halogen substituents can be removed from aromatic rings. Gram positive bacteria have not been evaluated previously as potential supported Pd-bionanocatalysts. We compare the activity of ‘Bio-Pd(0)’ supported on the fundamentally different Gram negative (Desulfovibrio) and Gram positive (Bacillus) bacterial surfaces, and evaluate the activity of the two types of ‘Bio-Pd(0)‘ in a standard reference reaction, the hydrogenation of itaconic acid, against a commercially available catalyst (5% Pd on carbon). The results show that the bionanocatalysts have a similar activity to the commercial material and biomanufacturing from waste sources may be an economic alternative to conventional processing for catalyst production as precious metal prices continue to rise.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 20-21)

Pages:

603-606

Citation:

Online since:

July 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Eberhardt: Surf. Sci. Vol. 500 (2002), p.242.

Google Scholar

[2] H. Hori, T. Teranishi, Y. Nakae, Y. Seino, M. Miyake and S. Yamada: Phys. Lett. A Vol. 263 (1999), p.406.

Google Scholar

[3] S. Nishimura: Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (Wiley, New York, Chichester, 2001).

Google Scholar

[4] C. Schuth and M. Reinhard: Appl. Catalysis B-Environmental Vol. 18 (1998), p.215.

Google Scholar

[5] P. Mulvaney, L.M. Liz-Marzan, M. Giersig and T. Ung: J. Mater. Chem. Vol. 10 (2000), p.1259.

Google Scholar

[6] T. Taniyama, T. Sato, E. Ohta and M. Takeda: Physica B Vol. 213 (1995), p.254.

Google Scholar

[7] T.V. Choudhary and D.W. Goodman: Top. Catal. Vol. 21 (2002), p.25.

Google Scholar

[8] L.E. Macaskie, P. Yong, M. Paterson-Beedle, A.C. Thackray, P.M. Marquis, R.L. Sammons, K.P. Nott and L.D. Hall: J. Biotechnol. Vol. 118 (2005), p.187.

DOI: 10.1016/j.jbiotec.2005.03.006

Google Scholar

[9] L.E. Macaskie, R.M. Empson, F. Lin and M.R. Tolley: J. Chem. Technol. Biotechnol. Vol. 63 (1995), p.1.

Google Scholar

[10] M. Paterson-Beedle, K.P. Nott, L.E. Macaskie and L.D. Hall, in: Microbial Growth in Biofilms, Pt B, edited by R. J. Doyle, (2001), p.285.

Google Scholar

[11] V.J.M. Allan, M.E. Callow, L.E. Macaskie and M. Paterson-Beedle: Microbiology-SGM Vol. 148 (2002), p.277.

Google Scholar

[12] J. R. Lloyd, P. Yong and L.E. Macaskie: Appl. Environ. Microbiol. Vol. 64 (1998), p.4607.

Google Scholar

[13] P. Yong, N.A. Rowson, J.P.G. Farr, I.R. Harris and L.E. Macaskie: Biotechnol. Bioeng. Vol. 80 (2002), p.369.

Google Scholar

[14] V.S. Baxter-Plant, I.P. Mikheenko and L.E. Macaskie: Biodegradation Vol. 14 (2003), p.83.

Google Scholar

[15] A.N. Mabbett, P. Yong, J.P.G. Farr and L.E. Macaskie: Biotechnol. Bioeng. Vol. 87 (2004), p.104.

Google Scholar

[16] A.N. Mabbett, D. Sanyahumbi, P. Yong and L.E. Macaskie: Environ. Sci. Technol. Vol. 40 (2006), p.1015.

Google Scholar

[17] I. de Vargas, D. Sanyahumbi, M.A. Ashworth, C.M. Hardy and L.E. Macaskie, in: 16th International Biohydrometallurgy Symposium, edited by S. T. L. Harrison, D. E. Rawlings and J. Petersen, 16th International Biohydrometallurgy Symposium, Cape Town, (2005).

DOI: 10.1016/j.hydromet.2006.03.031

Google Scholar

[18] I.P. Mikheenko, P.M. Mikheenko, S. Dementin, M. Rousset and L.E. Macaskie, in: 16th International Biohydrometallurgy Symposium, edited by S. T. L. Harrison, D. E. Rawlings and J. Petersen, Cape Town, (2005), p.383.

Google Scholar

[19] S. Selenska-Pobell, P. Panak, V. Miteva, I. Boudakov, G. Bernhard and H. Nitsche: FEMS Microbiol. Ecol. Vol. 29 (1999), p.59.

DOI: 10.1111/j.1574-6941.1999.tb00598.x

Google Scholar

[20] J. Wood and P.H. Turner: Appl. Spectrosc. Vol. 57 (2003), p.293.

Google Scholar

[21] I. P. Mikheenko, Ph. D. Thesis, (2004).

Google Scholar

[22] N.J. Creamer, I.P. Mikheenko, P. Yong, K. Deplanche, D. Sanyahumbi, J. Wood, K. Pollmann, M. Merroun, S. Selenska-Pobell and L.E. Macaskie: submitted to Catalysis Today.

DOI: 10.1016/j.cattod.2007.04.014

Google Scholar

[23] I.P. Mikheenko, K. Deplanche, P. Yong, N.J. Creamer, J. Wood and L.E. Macaskie: submitted to Environmental Microbiology.

Google Scholar

[24] K. Fahmy, M. Merroun, K. Pollmann, J. Raff, O. Savchuk, C. Hennig and S. Selenska-Pobell: Biophys. J. Vol. 91 (2006), p.996.

DOI: 10.1529/biophysj.105.079137

Google Scholar