A Novel Hydrogenation and Hydrogenolysis Catalyst Using Palladized Biomass of Gram-negative and Gram-positive Bacteria

Abstract:

Article Preview

Palladized biomass of typical Gram negative bacteria (Desulfovibrio desulfuricans and Escherichia coli) is well documented as a potentially useful catalyst for reduction of metallic species such as Cr(VI). This bionanocatalyst can be sourced from Pd-waste and scrap leachates via biocrystallization. A major industrial application of precious metal catalysts is in hydrogenation and hydrogenolysis reactions whereby, respectively, H is added across unsaturated bonds and halogen substituents can be removed from aromatic rings. Gram positive bacteria have not been evaluated previously as potential supported Pd-bionanocatalysts. We compare the activity of ‘Bio-Pd(0)’ supported on the fundamentally different Gram negative (Desulfovibrio) and Gram positive (Bacillus) bacterial surfaces, and evaluate the activity of the two types of ‘Bio-Pd(0)‘ in a standard reference reaction, the hydrogenation of itaconic acid, against a commercially available catalyst (5% Pd on carbon). The results show that the bionanocatalysts have a similar activity to the commercial material and biomanufacturing from waste sources may be an economic alternative to conventional processing for catalyst production as precious metal prices continue to rise.

Info:

Periodical:

Advanced Materials Research (Volumes 20-21)

Edited by:

Axel Schippers, Wolfgang Sand, Franz Glombitza and Sabine Willscher

Pages:

603-606

Citation:

N.J. Creamer et al., "A Novel Hydrogenation and Hydrogenolysis Catalyst Using Palladized Biomass of Gram-negative and Gram-positive Bacteria", Advanced Materials Research, Vols. 20-21, pp. 603-606, 2007

Online since:

July 2007

Export:

Price:

$38.00

[1] W. Eberhardt: Surf. Sci. Vol. 500 (2002), p.242.

[2] H. Hori, T. Teranishi, Y. Nakae, Y. Seino, M. Miyake and S. Yamada: Phys. Lett. A Vol. 263 (1999), p.406.

[3] S. Nishimura: Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis (Wiley, New York, Chichester, 2001).

[4] C. Schuth and M. Reinhard: Appl. Catalysis B-Environmental Vol. 18 (1998), p.215.

[5] P. Mulvaney, L.M. Liz-Marzan, M. Giersig and T. Ung: J. Mater. Chem. Vol. 10 (2000), p.1259.

[6] T. Taniyama, T. Sato, E. Ohta and M. Takeda: Physica B Vol. 213 (1995), p.254.

[7] T.V. Choudhary and D.W. Goodman: Top. Catal. Vol. 21 (2002), p.25.

[8] L.E. Macaskie, P. Yong, M. Paterson-Beedle, A.C. Thackray, P.M. Marquis, R.L. Sammons, K.P. Nott and L.D. Hall: J. Biotechnol. Vol. 118 (2005), p.187.

[9] L.E. Macaskie, R.M. Empson, F. Lin and M.R. Tolley: J. Chem. Technol. Biotechnol. Vol. 63 (1995), p.1.

[10] M. Paterson-Beedle, K.P. Nott, L.E. Macaskie and L.D. Hall, in: Microbial Growth in Biofilms, Pt B, edited by R. J. Doyle, (2001), p.285.

[11] V.J.M. Allan, M.E. Callow, L.E. Macaskie and M. Paterson-Beedle: Microbiology-SGM Vol. 148 (2002), p.277.

[12] J. R. Lloyd, P. Yong and L.E. Macaskie: Appl. Environ. Microbiol. Vol. 64 (1998), p.4607.

[13] P. Yong, N.A. Rowson, J.P.G. Farr, I.R. Harris and L.E. Macaskie: Biotechnol. Bioeng. Vol. 80 (2002), p.369.

[14] V.S. Baxter-Plant, I.P. Mikheenko and L.E. Macaskie: Biodegradation Vol. 14 (2003), p.83.

[15] A.N. Mabbett, P. Yong, J.P.G. Farr and L.E. Macaskie: Biotechnol. Bioeng. Vol. 87 (2004), p.104.

[16] A.N. Mabbett, D. Sanyahumbi, P. Yong and L.E. Macaskie: Environ. Sci. Technol. Vol. 40 (2006), p.1015.

[17] I. de Vargas, D. Sanyahumbi, M.A. Ashworth, C.M. Hardy and L.E. Macaskie, in: 16th International Biohydrometallurgy Symposium, edited by S. T. L. Harrison, D. E. Rawlings and J. Petersen, 16th International Biohydrometallurgy Symposium, Cape Town, (2005).

DOI: https://doi.org/10.1016/j.hydromet.2006.03.031

[18] I.P. Mikheenko, P.M. Mikheenko, S. Dementin, M. Rousset and L.E. Macaskie, in: 16th International Biohydrometallurgy Symposium, edited by S. T. L. Harrison, D. E. Rawlings and J. Petersen, Cape Town, (2005), p.383.

[19] S. Selenska-Pobell, P. Panak, V. Miteva, I. Boudakov, G. Bernhard and H. Nitsche: FEMS Microbiol. Ecol. Vol. 29 (1999), p.59.

[20] J. Wood and P.H. Turner: Appl. Spectrosc. Vol. 57 (2003), p.293.

[21] I. P. Mikheenko, Ph. D. Thesis, (2004).

[22] N.J. Creamer, I.P. Mikheenko, P. Yong, K. Deplanche, D. Sanyahumbi, J. Wood, K. Pollmann, M. Merroun, S. Selenska-Pobell and L.E. Macaskie: submitted to Catalysis Today.

DOI: https://doi.org/10.1016/j.cattod.2007.04.014

[23] I.P. Mikheenko, K. Deplanche, P. Yong, N.J. Creamer, J. Wood and L.E. Macaskie: submitted to Environmental Microbiology.

[24] K. Fahmy, M. Merroun, K. Pollmann, J. Raff, O. Savchuk, C. Hennig and S. Selenska-Pobell: Biophys. J. Vol. 91 (2006), p.996.

DOI: https://doi.org/10.1529/biophysj.105.079137