Photocatalytic Activity against Penicillium Expansum of Ag-Doped TiO2/SnO2/SiO2

Article Preview

Abstract:

The effect of 0.1-1 mol%Ag doping on crystallite size, morphology, photocatalytic and fungal growth suppression activities of TiO2/SnO2/SiO2 nano-composite powders were investigated. The powder was synthesized by sol-gel method and studied for physicochemical properties by XRD, spectrometric techniques, FTIR, SEM, EDX and BET. The anatase structure was formed after calcination at 500oC. Photocatalytic activities towards Penicillium expansum growth suppression correlated to the amount of sliver doped in TiO2/SnO2/SiO2 nano-composite powder under ultraviolet radiation. Ag 1.0mol% doped in TiO2/SiO2/SnO2 composite has a significant effect on antifungal behaviour. It could completely kill Penicillium expansum within one day of photacatalytic treatment under UV irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-217

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.S. Sonawane, B.B. Kale and M.K. Dongare: Materials Chemistry and Physics 85 (2004), p.52.

Google Scholar

[2] M. Langlet, S. Permpoon, D. Riassetto, G. Berthom´e, E. Pernot and J.C. Joud: Journal of Photochemistry and Photobiology A: Chemistry 181 (2006), p.203.

DOI: 10.1016/j.jphotochem.2005.11.026

Google Scholar

[3] T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima and K. Hashimoto: Thin Solid Films 351 (1999), p.260.

DOI: 10.1016/s0040-6090(99)00205-9

Google Scholar

[4] D.J. Kim, S.H. Hahn, S.H. Oh and E.J. Kim: Materials Letters 57 (2002), p.355.

Google Scholar

[5] E.M. El-Maghraby, Y. Nakamura and S. Rengakuji: Catalysis Communications 9 (2008), p.2357.

Google Scholar

[6] L. Sikong, J. Damchan, K. Kooptarnond and S. Niyomwas: Songklanakarin J. Sci. Technol. 30 (3) (2008), p.385.

Google Scholar

[7] L. Sikong, K. Kooptarnond, S. Niyomwas and J. Damchan: Songklanakarin Journal of Science and Technology 32(4) (2010), p.413.

Google Scholar

[8] S. Rengaraj and X.Z. Li: Journal of Molecular Catalysis A: Chemical 243 (2006), p.60.

Google Scholar

[9] H.E. Chao, Y.U. Yun, H.U. Xingfang and A. Larbot: Journal of the European Ceramic Society 23 (2003), p.1457.

Google Scholar

[10] T. Matsunaga, R. Tomada, T. Nakajima and H. Wake: FEMS Microbiology Letters 29 (1– 2) (1985), p.211.

Google Scholar

[11] P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum and W. A Jacoby: Applied and Environmental Microbiology 65 (9) (1999), p.4094.

Google Scholar

[12] K.P. Kuhn, I.F. Chaberny, K. Masholder, M. Stickler, V.W. Benz, H.G. Sonntag, and L. Erdinger: Chemosphere 53 (1) (2003), p.71.

Google Scholar

[13] M. Rai, A. Yadav and A. Gade: Biotechnology Advances 27 (1) (2009), p.76.

Google Scholar

[14] H.H. Nersisyan, J.H. Lee, H.T. Son, C.W. Won and D.Y. Maeng: Materials Research Bulletin 38 (2003), p.949.

Google Scholar

[15] S.H. Jeong, S.Y. Yeo and S.C. Yi: Journal of Materials Science 40 (2005), p.5407.

Google Scholar

[16] S.Y. Yeo, H.J. Lee and S.H. Jeong: Journal of Materials Science 38 (2003), p.2143.

Google Scholar

[17] S.Y. Yeo and S.H. Jeong: Polymer-International 52 (7) (2003), p.1053.

Google Scholar

[18] K. Shiba, H. Hinode and M. Wakihara: React. Kinet. Catal. Lett. 64 No. 2 (1998), p.281.

Google Scholar

[19] I. Ilisz, Z. LaÂszlo and A. Dombi: Applied Catalysis A: General 180 (1999), p.25.

Google Scholar

[20] S. Bakardjieva, J. Sˇubrt, V. Sˇtengl, M. J. Dianez and M. J. Sayagues: Applied Catalysis B: Environmental 58 (2005), p.193.

Google Scholar

[21] M. Kanna and S. Wongnawa: Materials Chemistry and Physics 110 (2008), p.166.

Google Scholar

[22] W. -Chi Hung, S. -Han Fu, J. -JenTseng, H. Chu and T. -Hsing Ko: Chemosphere 66 (2007), p.2142.

Google Scholar

[23] C. Maneerat and Y. Hayata: International Journal of Food Microbiology 107 (2006).

Google Scholar