[1]
K. B. BROBERG, The propagation of a brittle crack. Arkve. für Fysik. 18, 159-192 (1960).
Google Scholar
[2]
J. W. CRAGGS, Fracture of solids, Ed. Drucker and Gilman, Interscience (1963).
Google Scholar
[3]
V. A. Saraikin, L.I. Slepyan. Plane problem of the dynamics of a crack in an elastic solid. Mech. Soli. (1979), Vol. 14, 46—62.
Google Scholar
[4]
L.I. Slepyan. Models and phenomena in fracture mechanics. Springer. 2002: 337-343.
Google Scholar
[5]
C. ATKINSON, The Propagation of A Brittle Crack in Anisotropic Material. Int. J. Engng Sci. 3, 77¾91, (1970).
Google Scholar
[6]
G. P. CHAREPANOV, Mechanics of Brittle Fracture, Nauka Moscow, (1973).
Google Scholar
[7]
F.D. GAHOV, Boundary-Value Problems. Fizmatgiz, Moscow (1963).
Google Scholar
[8]
N.I. MUSKHELISHVILI. Singular integral equations. Nauka Moscow, (1968).
Google Scholar
[9]
Lü Nian-chun, Cheng Jin, Cheng Yun-hong. Mode Ⅲ Interface Crack Propagation in Two Joined Media with Weak Dissimilarity and Strong Orthotropy. Theo. App. Frac. Mech., (2001), 36(3): 219—231.
DOI: 10.1016/s0167-8442(01)00073-8
Google Scholar
[10]
R.F. HOSKINS, Generalized Functions, Ellis Horwood, (1979).
Google Scholar
[11]
G.P. CHAREPANOV, E.F. AFANASOV, Some dynamic problems of the theory of elasticity— a review. Int. J. Eng. Sci., 12 (1974), 665—690.
Google Scholar
[12]
A.C. ERIGEN, E. S. SUHUBI. ELASTODYNYMICS VOL. 2. Linear Theory. ACADEMIC PRESS New York San Francisco London (1975).
Google Scholar
[13]
R. P. KANWAL, D. L. SHARMA, Singularity Methods for Elastostatics, J. Elasticity, 4. (1976), Vol. 6, 405—418.
DOI: 10.1007/bf00040900
Google Scholar
[14]
N. C. LÜ, L. Q. TANG, Y. H. CHENG. Deduction of self-similar solutions of other form on anti-plane problems for an orthotropic anisotropic body. Quart. Mech. (to be published), (in Chinese).
Google Scholar
[15]
X. S. WANG, Singular Functions and Their Applications in Mechanics(in Chinese). SCIENTIFIC PRESS. Beijing (1993).
Google Scholar