Corrosion Resistance and Electrical Conductivity of TiN/CrN Multilayer Coated Stainless Steel

Article Preview

Abstract:

In this study, various multilayered TiN/CrN coatings were deposited on the SS316L stainless steel substrates by the cathodic arc deposition technique. By varying the turntable rotation speed, the multilayered coatings with different periodic layer thickness were obtained. The main target of this study is to enhance the corrosion resistance and electrical conductivity of the stainless steel for potential application of metallic bipolar plate of PEMFC. The results showed that all of the TiN/CrN coated samples presented a better corrosion resistance than the bare stainless steel substrate. The multi-layered coatings deposited at the 2 rpm provided the best corrosion resistance of the coated stainless steels when they were subjected to polarization test in 1M H2SO4 solution. The result of single fuel cell test shows that the TiN/CrN multi-layered coating with the best corrosion resistance is considered to be a candidate for PEMFC bipolar plate application in this study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

291-295

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Hornung, G. Kappelt, J. Power Sources, 72(1998) 20.

Google Scholar

[2] D.P. Davies, P.L. Adcock, M. Turpin, S.J. Rowen, J. Power Sources, 86 (2000) 237.

Google Scholar

[3] H. Wang, M. A. Sweikart, J. A. Turner, J. Power Sources, 115 (2003) 243.

Google Scholar

[4] M.C. Li, C.L. Zeng, S.Z. Luo, J.N. Shen, H.C. Lin, C.N. Cao, Electrochimica Acta, 48 (2003) 1735.

Google Scholar

[5] H. Tawfik, Y. Hung, D. Mahajan, J Power Sources, 163 (2007) 755.

Google Scholar

[6] A. Hermann, T. Chaudhuri, P. Spagnol, International J. Hydrogen Energy, 30 (2005) 1297.

Google Scholar

[7] J. Wind, R. Späh, W. Kaiser, G. Böhm, J Power Sources, 105 (2002) 256.

Google Scholar

[8] E. Middelman, W. Kout, B. Vogelaar, J. Lenssen, E. de Waal, J. Power Sources 118 (2003) 44.

DOI: 10.1016/s0378-7753(03)00070-3

Google Scholar

[9] T. Matsuura, M. Kato, M. Hori, J. Power Sources 161 (2006) 74.

Google Scholar

[10] Y.J. Ren, C.L. Zeng, J. Power Sources 171 (2007) 778.

Google Scholar

[11] W. Y. Ho, H. J. Pan, C. L. Chang, D. Y. Wang, J.J. Hwang, Surf. Coat. Technol., 202 (2007) 1297.

Google Scholar

[12] H. Lee, S. Lee, J. Kim, M. Kim, D. Wee, International J. Hydrogen Energy, 33 (2008) 4171.

Google Scholar

[13] W. Yoon, X. Huang, P. Fazzino, K. L. Reifsnider, J. Power Sources 179 (2008) 265.

Google Scholar

[14] S. A. Abo El-Enin, O. E. Abdel-Salam, H. El-Abd, A. M. Amin, J. Power Sources 177 (2008) 131.

DOI: 10.1016/j.jpowsour.2007.11.042

Google Scholar

[15] Y. Wang, D. O. Northwood, International J. Hydrogen Energy, 32 (2007) 895.

Google Scholar

[16] Y. Fu, G. Lin, M. Hou, B. Wu, H. Li, L. Hao, Z. Shao, B. Yi, International J. Hydrogen Energy 34 (2009 ) 453.

Google Scholar

[17] C. Liu, A. Leyland, Q. Bi, A. Matthews, Surf. Coat. Technol. 141(2001) 164.

Google Scholar

[18] C.S. Lin, C.S. Ke, H. Peng, Surf. Coat. Technol., 146 –147 (2001) 168.

Google Scholar

[19] B. Rother, H.A. Jehn, H.M. Gabriel, Surf. Coat. Technol., 86-87 (1996) 207.

Google Scholar

[20] K. Yamamoto, H. Ito, S. Kujime, Surf. Coat. Technol., 201 (2007) 5244.

Google Scholar