Anomalous Effect of Strain Rate on the Tensile Elongation of Coarse-Grained Pure Iron with Grain Boundary Micro-Voids

Article Preview

Abstract:

The plastic deformation and damage behavior of coarse-grained commercially pure iron containing grain boundary micro-voids were investigated at room temperature with different strain rates ranging from 1.0×10-5s-1 to 1.0×10-2s-1 under uniaxial tension. It is found that, with increasing strain rate, the lower yield stress and ultimate tensile strength increase normally, and abnormally the elongation increases as well. By comparison with the similar cases of other materials, the present phenomenon of anomalous strain rate effect on elongation is thought to be related to the pre-existence of GB micro-voids in the raw CP iron material. The extending deformation of GB micro-voids towards the tensile direction would contribute more to the total elongation, as the strain rate increases; this should be the most possible reason for the anomalous strain-rate dependence of elongation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

334-338

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Sommer, H. Mughrabi and D. Lochner, Acta Mater., Vol. 46 (1998), p.1527.

Google Scholar

[2] C. Sommer, H. Mughrabi and D. Lochner, Acta Mater., Vol. 46 (1998), p.1537.

Google Scholar

[3] I. Belianov and P. Marmy, J. Nucl. Mater., Vol. 258-263 (1998), p.1259.

Google Scholar

[4] J. Harding, Acta Metall., Vol. 17 (1969), p.949.

Google Scholar

[5] H. Matsui, H. Kimuro and S. Moriya, Mat. Sci. Eng., Vol. 40 (1979), p.207.

Google Scholar

[6] E. Van der giess en, M.W.D. Van der burg, A. Needleman and V. Tvergaard, J. Mech. Phys. Solids, Vol 43 (1995), p.123.

Google Scholar

[7] Z.Y. Yu, Q.W. Jiang and X.W. Li: Phys. Stat. Sol. (a), Vol. 205 (2008), p.2417.

Google Scholar

[8] D.R. hayhurst, J. Lin and R.J. Hayhurst: Inter. J. Soli. Struct., Vol 45 (2008), p.2233.

Google Scholar

[9] X.W. Li, Q.W. Jiang, Y. Liu and Y. Wang: Inter. J. Mod. Phys. B, Vol. 23 (2009), p.1758.

Google Scholar

[10] T.H. Courtney: Mechanical Behavior of Materials, 2nd ed (McGraw Hill, Boston 2000).

Google Scholar

[11] W.F. Hosford: Mechanical Behavior of Materials (Cambridge University Press, Cambridge 2005).

Google Scholar

[12] T. Takasugi, T. Tsuyumu, Y. Kaneno and H. Inoue: Scripta Mater., Vol. 43 (2000), p.397.

Google Scholar

[13] J.H. Xu, T. Leonhardt, T. Farrell, M. Effgen and T.G. Zhai: Mat. Sci. Eng. A, Vol. 479 (2008), p.76.

Google Scholar

[14] L. Lu, S.X. Li and K. Lu: Scripta Mater., Vol. 43 (2001), p.1163.

Google Scholar

[15] T.G. Nich, C.H. Henshall and J. Wadsworth: Scripta Metall., Vol. 18 (1984), p.1405.

Google Scholar

[16] K.G. Matsubara, Y. Miyahara, Z. Horita and T.G. Langdon: Acta Metall., Vol. 51 (2003), p.3073.

Google Scholar

[17] T. Tanaka, M. Kohzu, Y. Takigawa and K. Higashi: Scripta Metar., Vol. 52 (2005), p.231.

Google Scholar

[18] T.G. Langdon: Metall. Trans. A, Vol. 13 (1982), p.689.

Google Scholar

[19] M.S. Huang, Z.H. Li and C. Wang: Acta Mater., Vol 55 (2007), p.1387.

Google Scholar

[20] T. Hasegawa and K. Okazaki: Mater. Sci. Eng. A, Vol. 260 (1999), p.296.

Google Scholar