Effect of the Milling Conditions on the Formation of Nanostructured Fe–Al Powders

Article Preview

Abstract:

Nanocrystalline Fe72Al28 alloy samples were prepared by the mechanical alloying process using planetary high-energy ball mill. The alloy formation and different physical properties were investigated as a function of milling time, t, (in the 0-24 h range) by means of the X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), energy dispersive X-ray (EDAX) and Mössbauer spectroscopy. The complete formation of bcc-FeAl solid solution is observed after 4 h of milling. The lattice parameter, a (nm), quickly increases within the first hours of milling and reaches a maximum value of 0.291 nm at 12 h of milling time; then a (nm) decreases to a value of 0.2885 nm for 24 h. The grain size decreases from 55 to 10 nm, while the strain increases from 0.18% to 0.88%. Grain morphologies at different formation stages were observed by SEM. The Mössbauer spectra show different behaviors with the increase of milling time. Indeed, after 4 h, the Mössbauer spectrum shows the presence of a singlet and sextet. The singlet indicates the presence of paramagnetic phase characteristic of A2 disordered structure and the sextet with a mean hyperfine field, , of 21 T is indicative of ordered DO3 structure. After 8 h of milling, the paramagnetic phase disappears leading to the appearance of a sextet, with a mean hyperfine field, Hhf, equal to 24.18 T which is characteristic of DO3’ structure. For the higher milling time i.e. 24 h, the Mössbauer spectrum was analyzed with two components. The first one with equal to 29.9 T is still indicative of ordered DO3, however, the second with a value of 10.25 T is characteristic of the fine domain B2 ordered structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

490-497

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.C. Koch, Mater. Sci. Forum 88–90, 243–262 (1992).

Google Scholar

[2] B.S. Murty, S. Ranganathan, Int. Mater. Rev. 43, 101–141 (1998).

Google Scholar

[3] C. Suryanarayana, Prog. Mater. Sci. 46 , 1–184 (2001).

Google Scholar

[4] H. Gleiter, NanoStruct. Mater. 1, 1–19 (1992).

Google Scholar

[5] M. Krasnowski*, T. Kulik, Intermetallics 18 , 47–50 (2010).

Google Scholar

[6] G.W. Nieman, J.R. Weertman, R.W. Siegel, NanoStruct. Mater. 1, 185–190 (1992).

Google Scholar

[7] R.W. Siegel, G.E. Fougere, NanoStruct. Mater. 6 , 205–216 (1995).

Google Scholar

[8] J. Karch, R. Birringer, H. Gleiter, Nature 330, 556–558 (1987).

Google Scholar

[9] S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee, Nature 398, 684–686 (1999).

Google Scholar

[10] R. Birringer, Mater. Sci. Eng. A117, 33–43 (1989).

Google Scholar

[11] J.C. wang, D.G. Liu, M.X. Chen, X.X. Cai, Scripta Metall. 25 , 2851 (1991).

Google Scholar

[12] X' Pert High Score Plus Software, PANalytical (2004).

Google Scholar

[13] P. Scherrer, Nachr. Ges. Wiss. Göttingen. 2 , 96 (1918).

Google Scholar

[14] A. R. Stokes, A. C. J. Wilson, Proc. Phys. Soc. London 56, 174 (1944).

Google Scholar

[15] K. Lagarek and D. Rancourt, Recoil Software, University of Ottawa, (1998).

Google Scholar

[16] L. Castex, J.L. Lebrun, G. Maeder, J.M. Sprauel, Détermination de contraintes résiduelles.

Google Scholar

[17] K. Wolski, G Caer, P. Delcroix, R. Fillet, F. Thévenot, J. Le Coze, MATER. A207 , 97-104 (1996).

Google Scholar

[18] Run- Hua Fan, J. Sun, H. Gong, K. Sun, W. Wang, powders technology, 149 , 121-126 (2005).

Google Scholar

[19] D. Oleszak and H. Matyja, Nanostructured. Materials. 6, 425-428 (1995).

Google Scholar

[20] W.M. Tang, Z.X. Zheng, H.J. Tang, R. Ren, Y.C. Wu, Intermetallics 15 , 1020-1026 (2007).

Google Scholar

[21] Elzbieta Jartych, Jan K. Zurawicz, Dariusz Oleszak, Marek Pekata, Jan Sarzynski, Mieczystaw Budzyn ski, Journal of Magnetism and Magnetic Materials 186 , 299-305 (1998).

Google Scholar

[22] R.W. Cahn, Lattice parameter changes on disordering intermetallics, Intermetallics 7 , 1089–1094 (1999).

DOI: 10.1016/s0966-9795(99)00035-7

Google Scholar

[23] E. Jartych, J.K. Zurawicz, D. Oleszak, M. Pekala, nanostructured Materials vol 12 , 927-930 (1999).

Google Scholar

[24] D. S. Schmool, E. Araujo, M. M. Amado, M. Alegria Feio, D. Martin Rodriguez, J.S. Garitaonandia and F. Plazaola, J. Magn. Mater. 272-276 , 1342-1344 (2004).

DOI: 10.1016/j.jmmm.2003.12.102

Google Scholar

[25] V. Sebastian, N. Lakshmi and K. Venugopalan, Intermetallics 15 , 1006-1012 (2007).

Google Scholar

[26] H.C. Verma, Satyam Suwas, Journal of Magnetism and Magnetic Materials 212 , 361-367 (2000).

Google Scholar

[27] S. Sarkar, C. Bansal, Journal of Alloys and Compounds 334 , 135–142 (2002).

Google Scholar