Electrochemical Transient Behaviors of Tubular Steel in Buffered Acidic Solution Dissolved with Hydrogen Sulfide and Carbon Dioxide

Article Preview

Abstract:

In this work, the electrochemical transient behaviors of tubular steel API-P110 in buffered acidic NaCl solutions saturated with 50% H2S and different content of CO2 mixture gases, were investigated by single potential step chronoamperometry. Analysis of the results shows that fewer reactants take part in the reduction reaction when adding CO2 content from 17% to 50% in 50% H2S containing solution. Anions desorption process controls the reactant transferring process in metal-solution interface in the solution containing H2S and CO2. When at higher overpotential, anions desorption enhances and hydrogen absorption depresses with the increasing CO2 content in H2S/CO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

321-326

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Zhu, J. Dai, S. Zhang, Generation mechanism and distribution and characteristics of hydrogen sulfide bearing gas in China, Natural Gas Geoscience 15 (2004) 166-170. in Chinese.

Google Scholar

[2] Z. Y. Liu, C. F. Dong, X. G. Li, Q. Zhi, Y. F. Cheng: J Mater Sci Vol. 44 (2009), p.4228.

Google Scholar

[3] H. D. Deng, C. F. Li, X. L. Cao, C. J. Pan: Int. Rev. Chem. Eng. Vol. 2(2010), p.75.

Google Scholar

[4] C. D. Waard, D. E. Milliams: Corrosion Vol. 31 (1975), p.177.

Google Scholar

[5] Nesic S., Postlethwaite J., Olsen S: Corros. Vol. 52 (1996), p.280.

Google Scholar

[6] Bolmer P. W.: Corros. Vol. 21 (1965), p.69.

Google Scholar

[7] S. P. Ewing: Corros. Vol. 11(1955), p.51.

Google Scholar

[8] Schmitt G, Fundamental aspects of CO2 corrosion of steel, CORROSION/l983, paper no. 44, Houston: MACE, (1983).

Google Scholar

[9] Kermani M. B., Morshed A.: Corros. Vol. 59 (2003), p.659.

Google Scholar

[10] Ramanarayanan T. A., Smith S. N: Corros. Vol. 46 (1996), p.66.

Google Scholar

[11] Smith J. S., Miller J. D. A.: J. Brit. Corros. Vo. 10 (1975), p.136.

Google Scholar

[12] Sardisco J.B., Pitts R. E.: Corros. Vol. 21 (1965), p.350.

Google Scholar

[13] Huang H., Shaw W. J. D.: Corros. Vol. 48 (1992), p.931.

Google Scholar

[14] Wei Baoming: Corrosion theory of metal and its application (Chemical Industry Press, China, 1984).

Google Scholar

[15] V. C. Wagner, W. Traud, Z: Electrochem., Vol. 44 (1938), p.391.

Google Scholar

[16] Gao Ying, Wu Bing: The foundation of electrochemisty (Chemical Industry Press, China, 2004).

Google Scholar

[17] Th. Wandlowski, D. Lampner, S.M. Lindsay: J. Electroanal. Chem. Vol. 404(1996), p.215.

Google Scholar

[18] S. Pronkin, Th. Wandlowski: J. Electroanal. Chem. Vol. 550–551 (2003), p.131.

Google Scholar

[19] M. Hara, U. Linke, Th. Wandlowski: Electrochimica Acta Vol. 52 (2007), p.5733.

Google Scholar

[20] Parkins R. N. The involvement of Hydrogen in Low pH stress corrosion cracking of pipeline steel, 12th EPRG/PRCI Biennial Joint Technical Meeting in Line Pipe Research, May, Croningen, the Netherlands, (1999).

Google Scholar

[21] Gray L. G. S., B. G. Andersion, M. J. Danysh, P. G. Tremaine, Effect of pH and temperature on the mechanism of carbon steel corrosion by aqueous carbon dioxide., CORROSION/90, paper no. 40, Houston, TX: NACE, (1990).

Google Scholar

[22] J. O. M. Bockris, J. McBreen, L. Nanis, J. Electrochem. Soc. Vol. 112 (1965), p.1025.

Google Scholar