Electronic Structure, Effective Masses and Optical Properties of Monoclinic HfO2 from First-Principles Calculations

Article Preview

Abstract:

Electronic structure, effective masses and optical properties of monoclinic HfO2 were studied using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The calculated equilibrium lattice parameters are in agreement with the previous works. From the band structure, the effective masses and optical properties are obtained. The calculated band structure shows that monoclinic HfO2 has indirect band gap and all of the effective masses of electrons and holes are less than that of a free electron. The peaks position distributions of imaginary parts of the complex dielectric function have been explained according to the theory of crystal-field and molecular-orbital bonding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

341-344

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Gilo, et al., Thin Solid Films Vol. 350 (1999) p.203.

Google Scholar

[2] K. Yamamoto, et al., Appl. Phys. Lett. Vol. 81 (2002) p. (2053).

Google Scholar

[3] G.M. Rignanese, et al., Phys. Rev. B Vol. 69 (2004) p.184301.

Google Scholar

[4] J.C. Garcia, et al., Appl. Phys. Lett. Vol. 85 (2004) p.5022.

Google Scholar

[5] X. Zhao, et al., Phys. Rev. B Vol. 65 (2002) p.233106.

Google Scholar

[6] R. Terki, et al., Mater. Lett. Vol. 62 (2008) 1484.

Google Scholar

[7] Z.J. Wang, et al., J. Crystal Growth Vol. 281 (2005) 452.

Google Scholar

[8] F.L. Martínez, et al., J. Phys. D: Appl. Phys. Vol. 40 (2007) p.5256.

Google Scholar

[9] M. Toledano-Luque, et al., J. Appl. Phys. Vol. 102 (2007) p.044106.

Google Scholar

[10] J. Aarik, et al., Thin Solid Films Vol. 466 (2004) p.41.

Google Scholar

[11] K. Kukli, et al., Microelectron. Eng. Vol. 84 (2007) p. (2010).

Google Scholar

[12] C.A. Ponce, et al., J. Phys.: Condens. Matter Vol. 20 (2008) p.045213.

Google Scholar

[13] R.A. Casali, et al., J. Phys.: Condens. Matter Vol. 17 (2005) p.5795.

Google Scholar

[14] Q. Liu, et al., Physica B (2009), doi: 10. 1016/j. physb. 2009. 06. 061.

Google Scholar

[15] R. Terki, et al., Comput. Mater. Sci. Vol. 33 (2005) p.44.

Google Scholar

[16] J.P. Perdew, et al., Phys. Rev. B Vol. 46 (1992) p.6671.

Google Scholar

[17] M.D. Segall, et al., J. Phys.: Condens. Matter Vol. 14 (2002) p.2717.

Google Scholar

[18] J. Wang, et al., J. Mater. Sci. Vol. 27 (1992) p.5397.

Google Scholar

[19] G. He, et al., Appl. Surf. Sci. Vol. 253 (2007) p.3413.

Google Scholar

[20] J.C. Garcia, et al., AIP Conf. Proc. Vol. 772 (2005) p.189.

Google Scholar

[21] B.H. Koh, et al., J. Appl. Phys. Vol. 95 (2004) p.5094.

Google Scholar

[22] W.J. Zhu, et al, IEEE Elec. Dev. Lett. Vol. 23 (2002) p.97.

Google Scholar

[23] Y. -C. Yeo, et al., Appl. Phys. Lett. Vol. 81 (2002) p. (2091).

Google Scholar

[24] R.C. Fang: Solid Spectroscopy (Chinese Science Technology University Press, Hefei 2003).

Google Scholar

[25] Y. Zhang, W.M. Shen: Basic of Solid Electronics (Zhe Jiang University Press, Hangzhou 2005).

Google Scholar

[26] S. -G. Lim, et al., J. Appl. Phys. Vol. 91 (2002) p.4500.

Google Scholar

[27] H.L. Chen: Advanced Inorganic Chemistry (Advanced Education Press, Beijing 2005).

Google Scholar

[28] D.K. Pan, C.D. Zhao, Z.X. Zheng: Structure of Matter (Advanced Education Press, Beijing 1989).

Google Scholar