[1]
E. Camouzis, E. Chatterjee, G. Ladas, On the dynamics of xn+1 = (δxn-2 + xn-3) / (A + xn-3), Journal of Mathematical Analysis and Applications, Vol. 331 (2007), p.230 – 239.
Google Scholar
[2]
M. Dehghan, M.J. Douraki, M. Razzaghi, Global stability of a higher order rational recursive sequence, Applied Mathematics and Computation, Vol. 179 (2006), pp.161-174.
DOI: 10.1016/j.amc.2005.11.089
Google Scholar
[3]
M. Dehghan, N. Rastegar, On the global behavior of a high-order rational difference equation, Computer Physics Communications, Vol. 180(2009), pp.873-878.
DOI: 10.1016/j.cpc.2008.12.006
Google Scholar
[4]
M.J. Douraki, M. Dehghan, J. Mashreghi, Dynamics of the difference equation x(n+1) = (x(n)+px(n-k)/(x(n)+q), Computers and Mathematics with Applications, Vol. 56 (2008), 186-198.
Google Scholar
[5]
E. A. Grove, G. Ladas, M. Predescu and M. Radin, On the global character of yn+1 = (pyn-1 + yn-2) / (q + yn-2), Math. Sci. Res. Hot-Line, Vol. 5 (2001).
Google Scholar
[6]
M.R.S. Kulenovic, G. Ladas, N. R. Prokup, A rational difference equation, Computers and Mathematics with Applications, Vol. 41(2001), pp.671-687.
DOI: 10.1016/s0898-1221(00)00311-4
Google Scholar
[7]
M.R.S. Kulenovic, G. Ladas, N. R. Prokup, The dynamics of facts and conjectures, Computers and Mathematics with Applications, Vol. 45 (2003), p.1087 – 1099.
Google Scholar
[8]
X. Li, D. Zhu, Global asymptotic stability for two recursive difference equations, Applied Mathematics and Computation, Vol. 150 (2004), pp.481-492.
DOI: 10.1016/s0096-3003(03)00286-8
Google Scholar
[9]
X. Yang, On the global asymptotic stability of the difference equation xn = (xn–1xn–2 + xn–3 + a) / (xn–1 + xn–2xn–3 + a), Applied Mathematics and Computation, Vol. 171 (2005), pp.857-861.
DOI: 10.1016/j.amc.2011.10.032
Google Scholar
[10]
X. Yang, Global asymptotic stability in a class of generalized Putnam equations, Journal of Mathematical Analysis and Applications, Vol. 322 (2006), p.693 – 698.
DOI: 10.1016/j.jmaa.2005.09.049
Google Scholar
[11]
X. Yang, Y. Yang, J. Luo, On the difference equation xn = (p + xn–s) / (qxn–t + xn–s), Applied Mathematics and Computation, Vol. 189 (2007), p.918– 926.
DOI: 10.1016/j.amc.2011.10.032
Google Scholar
[12]
Y. Yang, X. Yang, On the difference equation xn = (pxn–s + xn-t) / (qxn–s + xn–t), Applied Mathematics and Computation, Vol. 203(2008), pp.903-907.
DOI: 10.1016/j.amc.2011.10.032
Google Scholar