Synthesis of a Low-Density Copper Oxide Monolithic Aerogel Using Inorganic Salt Precursor

Article Preview

Abstract:

Copper oxide monolithic aerogel was prepared by sol–gel method using inorganic salt as precursor, ethanol as the solvent, and propylene oxide as the gelation agent. Calcination of the as-prepared aerogels at different temperatures induced a phase change which resulted in the formation of a mesoporous copper oxide aerogels. Field emission scanning electron microscopy (FESEM), Highresolution transmission electron microscopy (HRTEM), and Brunauer-Emmett-Teller(BET) methods were used to characterize the as-prepared aerogels. The combined results indicated that the as-prepared CuO aerogel has high porosity, high surface area, and low density. The X-ray diffraction (XRD) patterns show that the as-prepared CuO aerogel is highly crystalline and is identified to be predominantly copper chloride hydroxide, Cu2Cl(OH)3。

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Pages:

1165-1169

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.C. Pierre, G.M. Pajonk. Chem. ReV., Vol. 102, (2002), p.4243.

Google Scholar

[2] D.R. Rolison, B.J. Dunn. Mater. Chem., Vol. 11, (2001) p.963.

Google Scholar

[3] J.W. Long, D.R. Rolison. Acc. Chem. Res., Vol. 40, (2007), p.854.

Google Scholar

[4] D. Kramer, R.N. Viswanath. J. Nano. Lett., Vol. 4, (2004), p.793.

Google Scholar

[5] E.G. Alexander, M.T. Thomas, H.S. Joe. J. Non-Cryst. Solids, Vol. 285, (2001), p.22.

Google Scholar

[6] J.F. Poco, J.H. Satcher, L.W. Hrubesh. J. Non-Cryst. Solids, Vol. 285, (2001), p.57.

Google Scholar

[7] A.V. Rao, G.M. Pajonk, N.N. Parvathy. J. Mater. Sci., Vol. 29, (1994), p.1807.

Google Scholar

[8] A.E. Gash, H. Joe, J. Satcher, L. Randall. J. Non-Cryst. Solids, Vol. 350, (2004), p.145.

Google Scholar

[9] N.S. Charlotte, J.H. Louisa. J. Mater. Chem., Vol. 18, (2008), p.2607.

Google Scholar

[10] P.G. Yanping, N.S. Charlotte. J. Chem. Mater., Vol. 19, (2007), p.6007.

Google Scholar

[11] E. Baudrin, G. Sudant, D. Larcher, B. Dunn. J. M. Chem. Mater., Vol. 18, (2006), p.4369.

Google Scholar

[12] R. Sui, A.S. Rizkalla, P.A. Charpentier. Langmuir, Vol. 22, (2006), p.4390.

Google Scholar

[13] A. Du, B. Zhou, J. Shen. J. Non-Cryst. Solids, Vol. 355, (2009), p.175.

Google Scholar

[14] P. Ramamurthy, E.A. Secco. Can. J. Chem., Vol. 47, (1968), p.2185.

Google Scholar

[15] I. Schildermans, J. Mullens, J. Yperman, D. Franco. Thermochim. Acta., Vol. 224, (1993), p.227.

Google Scholar

[16] M.R. Bisengalieva, I.A. Kiseleva, L.V. Melchakova. J. Chem. Thermodyn., Vol. 29, (1997), p.345.

Google Scholar

[17] I. Schildermans, J. Mullens, B.J. Van. Thermochim. Acta., Vol. 224, (1993), p.227.

Google Scholar