[1]
Palaniappan R, Mandic D P. EEG Based Biometric Framework for Automatic Identity Verification. The Journal of VLSI Signal Processing, 2007, 49(2): 243-250.
DOI: 10.1007/s11265-007-0078-1
Google Scholar
[2]
Palaniappan R. Method of identifying individuals using VEP signals and neural network. IEE Proceedings - Science, Measurement and Technology, 2004, 151(1): 16-20.
DOI: 10.1049/ip-smt:20040003
Google Scholar
[3]
Palaniappan R. Electroencephalogram signals from imagined activities: a novel biometric identifier for a small population. Intelligent Data Engineering and Automated Learning (IDEAL), Lecture Notes in Computer Science 2006, 42: 604-611.
DOI: 10.1007/11875581_73
Google Scholar
[4]
Touyama H, Hirose M. Non-target photo images in oddball paradigm improve EEG-based personal identification rates. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008, 1: 4118-21.
DOI: 10.1109/iembs.2008.4650115
Google Scholar
[5]
Wardzinski R. Emerging biometrics: EEG-based identity verification. Proceedings of SPIE, the International Society for Optical Engineering, Photonics applications in astronomy, communications, industry, and high-energy physics experiments, 2006, 6347(2).
Google Scholar
[6]
Poulos M, Rangoussi M, and Kafetzopoulos E, Person identification via the EEG using computational geometry algorithms. Proceedings of the 9th European Signal Processing (EUSIPCO '98), 1998, 2125–2128.
Google Scholar
[7]
Poulos M, Rangoussi M, Chrissikopoulos V, et al. Parametric person identification from EEG using computational geometry. Proceedings of the 6th International Conference on Electronics, Circuits and Systems (ICECS '99), 1999, 2: 1005–1008.
DOI: 10.1109/icecs.1999.813403
Google Scholar
[8]
Poulos M, Rangoussi M, Alexandris N, et al. On the use of EEG features towards person identification via neural networks. Medical Informatics & the Internet in Medicine, 2001, 26(1): 35–48.
DOI: 10.1080/14639230118937
Google Scholar
[9]
Poulos M, Rangoussi M, Alexandris N, et al. Person identification from the EEG using nonlinear signal classification. Methods of Information in Medicine, 2002, 41(1): 64–75.
DOI: 10.1055/s-0038-1634316
Google Scholar
[10]
Palaniappan R, Danilo P. Biometrics from Brain Electrical Activity: A Machine Learning Approach. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(4): 738-742.
DOI: 10.1109/tpami.2007.1013
Google Scholar
[11]
Ravi K V R, Palaniappan, R. Channel Set for Individual Identification with EEG Biometric Using Genetic Algorithm. Conference on Computational Intelligence and Multimedia Applications, 2007. 328-332.
DOI: 10.1109/iccima.2007.82
Google Scholar
[12]
Ravi K V R, Palaniappan R, Eswaran C, et al. Data Encryption Using Event-related Brain Signals. Conference on Computational Intelligence and Multimedia Applications, 2007, 540-544.
DOI: 10.1109/iccima.2007.178
Google Scholar
[13]
Gupta C N, Palaniappan R, Swaminathan S. Novel analysis technique for a brain biometric system. International Journal of Medical Engineering and Informatics, 2008, 1(2): 266 – 273.
DOI: 10.1504/ijmei.2008.020754
Google Scholar
[14]
Ravi K V R, Palaniappan R. Recognising Individuals Using Their Brain Patterns, Proceedings of the Third International Conference on Information Technology and Applications (ICITA'05) , 2005, 2: 520 – 523.
DOI: 10.1109/icita.2005.234
Google Scholar
[15]
Palaniappan R. Two-stage biometric authentication method using thought activity brain waves. International Journal of Neural Systems, 2008, 18(1): 59-66.
DOI: 10.1142/s0129065708001373
Google Scholar
[16]
Ravi K V R, Palaniappan R. Leave-one-out Authentication of Persons Using 40 Hz EEG Oscillations Computer as a Tool. EUROCON, 2005, 1386-1389.
DOI: 10.1109/eurcon.2005.1630219
Google Scholar
[17]
Nuri Fırat Ince, Sami Arica1 and Ahmed Tewfik. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadi arbitrary time-frequency tilings. J. Neural Eng. 2006, 3: 235-244.
DOI: 10.1088/1741-2560/3/3/006
Google Scholar