Subwavelength Plasmon Microcavity Based on the Indefinite Metamaterial Waveguide

Article Preview

Abstract:

The resonance properties of surface plasmon in the IMM/dielectric/IMM waveguide are theoretically studied by using finite-difference time-domain technique, where the claddings are indefinite metamaterials (IMMs). From the dispersion relation, it is found that the IMM/dielectric/IMM waveguide supports TE polarized surface plasmon if IMM is always-cutoff with negative permeability. For an IMM/dielectric/IMM waveguide with a finite length, a subwavelength plasmon microcavity can be formed by Fabry-Perot resonance. At the resonant frequency, the magnetic field is maximized at the dielectric core entrance and exit, the electromagnetic energy is strongly concentrated around the dielectric core. When an artificial magnetic resonator is put at the core entrance and the resonance frequency is tuned to the plasmon microcavity mode, Rabi splitting can appear because of the strong coupling between this resonator and the cavity mode.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Pages:

1392-1397

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. G. Veselago: The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. -Usp., Vol. 10, pp.509-514, (1968).

DOI: 10.1070/pu1968v010n04abeh003699

Google Scholar

[2] A. Al and N. Engheta: Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. IEEE Trans. Antennas Propagat. Vol. 51, pp.2558-2571, (2003).

DOI: 10.1109/tap.2003.817553

Google Scholar

[3] Q. Cheng, R. P. Liu, J. J. Mock, T. J. Cui, and D. R. Smith: Partialfocusing by indefinite complementary metamaterials. Phys. Rev. B Vol. 78, p.121102, (2008).

Google Scholar

[4] Y. J. Xiang, X. Y. Dai, S. C. Wen: Total reflection of electromagnetic waves propagating from an isotropic medium to an indefinite metamaterial. Optics Commu, Vol. 274, pp.248-253, (2007).

DOI: 10.1016/j.optcom.2007.02.013

Google Scholar

[5] T. M. Grzegorczyk, Z. M. Thomas, and J. A. Kong: Inversion of critical angle and Brewster angle in anisotropic left-handed metamaterials. Appl. Phys. Lett. Vol. 86, p.251909, (2005).

DOI: 10.1063/1.1951050

Google Scholar

[6] W. Yan, L. F. Shen, L. X Ran, J. A. Kong: Surface modes at the interfaces between isotropic media and indefinite media. J. Opt. Soc. Am. A, Vol. 24, pp.530-535, (2007).

DOI: 10.1364/josaa.24.000530

Google Scholar

[7] R. Ruppin: Surface polaritons of a left-handed material slab. J. Phys.: Condens. Matter, Vol. 13, pp.1811-1819, (2001).

DOI: 10.1088/0953-8984/13/9/304

Google Scholar

[8] G. I. Stegeman, R. F. Wallis, and A. A. Maradudin: Excitation of surface polaritons by end-fire coupling. Opt. Lett. Vol. 8, pp.386-388, (1983).

DOI: 10.1364/ol.8.000386

Google Scholar

[9] H. T. Miyazaki, Y. Kurokawa: Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity. Phys. Rev. Lett. Vol. 96, p.097401, (2006).

DOI: 10.1103/physrevlett.96.097401

Google Scholar

[10] Y. Kurokawa, H. T. Miyazaki: Metal-insulator-metal plasmon nanocavities: Analysis of optical properties. Phys. Rev. B Vol. 75, p.035411, (2007).

DOI: 10.1103/physrevb.75.035411

Google Scholar

[11] Y. J. Feng, X. H. Teng, Y. Chen, T. Jiang: Electromagnetic wave propagation in anisotropic metamaterials created by a set of periodic inductor-capacitor circuit networks. Phys. Rev. B Vol. 72, p.245107, (2005).

DOI: 10.1103/physrevb.72.245107

Google Scholar

[12] L.W. Zhang, Y. H. Zhao, Q. Wang, K. Fang, W. B. Li, W.T. Qiao : Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Phys. Sin. unpublished.

Google Scholar

[13] R. Gordon: Light in a subwavelength slit in a metal: Propagation and reflection. Phys. Rev. B Vol. 73, p.153405, (2006).

Google Scholar

[14] D. Y. Lu, H. Liu, T. Li, S. M. Wang, F. M. Wang, S. N. Zhu, X. Zhang: Creation of a magnetic plasmon polariton through strong coupling between an artificial magnetic atom and the defect state in a defective multilayer microcavity. Phys. Rev. B Vol. 77(21), p.214302, (2008).

DOI: 10.1103/physrevb.77.214302

Google Scholar

[15] Y. Todorov, A. M. Andrews, I. Sagnes, R. Colombelli, P. Klang, G. Strasser, C. Sirtori: Strong Light-Matter Coupling in Subwavelength Metal-Dielectric Microcavities at Terahertz Frequencies. Phys. Rev. Lett. Vol. 102(18), p.186402, (2009).

DOI: 10.1103/physrevlett.102.186402

Google Scholar

[16] J. P. Xu, L. G. Wang and Q. Lin: Normal mode splitting of transmission spectrum for Fabry–Pérot cavity containing metamaterials. J. Opt. Soc. Am. B, Vol. 26(12), pp.50-54, ( 2009).

DOI: 10.1364/josab.26.000b50

Google Scholar

[17] K. Aydin and E. Ozbay: Capacitor-loaded split ring resonators as tunable metamaterial components. J. Appl. Phys. Vol. 101(2), p.024911, (2007).

DOI: 10.1063/1.2427110

Google Scholar