Solid-Phase Synthesis and Photocatalytic Property of Cobalt-Doped TiO2 Mesoporous Materials

Article Preview

Abstract:

Mesoporous cobalt-doped TiO2 (Co-TiO2) material has been synthesized by solid-state reaction route. The textural properties of the samples are monitored by the X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy(EDS), Raman spectroscopy, N2-physisorption, Fourier transform infrared spectroscopy (FT-IR), ultraviolet visible light spectroscopy (UV-Vis) and X-ray photoelectron spectroscopy(XPS). It is shown that the mesoporous Co-TiO2 is consisted of polycrystalline with some amorphous mixture and trace cobalt oxide. Cobalt has been incorporated into the framework of anatase TiO2. The bending vibration at 1124 cm-1 of Co-O-Ti bond in mesoporous Co-TiO2 material is confirmed. Interestingly, it possesses a large BET surface area (97.6 m2/g) and a narrow distribution of pore size presenting a better photocatalytic reactivity for toluene oxidation. Within 150 min irradiation, the maximum conversion (95 mol%) of toluene oxidation is obtained.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 217-218)

Pages:

1462-1468

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann: Chem. Rev. Vol 95 (1995), p.69.

Google Scholar

[2] A. Mills, S. L. Hunte: J. Photochem. Photobiol. A: Chem. Vol 108 (1997), p.1.

Google Scholar

[3] K. Nagaveni, G. Sivalingam, M.S. Hegde: Appl. Catal. B: Environ. Vol 48 (2004), p.83.

Google Scholar

[4] E. Beyers, P. Cool, E. F. Vansant: J. Phys. Chem. B. Vol 109 (2005), p.10081.

Google Scholar

[5] X. B. Chen, S. S. Mao: Chem. Rev. Vol 107 (2007), p.2891.

Google Scholar

[6] K. M. Nawal, F. Masahiro, T. Yuko: Nature. Vol 421(2003), p.350.

Google Scholar

[7] Y. J. Choi, Z. Seeley, A. Bandyopadhyay: Sensor Actuat. B: Chem. Vol 124 (2007), p.111.

Google Scholar

[8] U. Gesenhues: J. Photochem. Photobio. A: Chem. Vol 139 (2001), p.243.

Google Scholar

[9] Z. G. Wei, H. X. Zhang, Q. S. Li, J. P. Lewis: Chem. Chin. Uni. Vol 29 (2008), p.824.

Google Scholar

[10] F. Gracia, J. P. Holgado, A. Caballero: J. Phys. Chem. B, Vol 108(2004), p.17466.

Google Scholar

[11] Y. Wang, Z. H. Jiang, F.J. Yang: Mater. Sci. Eng. B, Vol 134 (2006), p.76.

Google Scholar

[12] F. Toda: Account. Chem. Res. Vol 12 (1995), p.480.

Google Scholar

[13] X. H. Liu, X. B. He, Y. B. Fu: Acta Chim. Sin. Vol 66 (2008), p.1725.

Google Scholar

[14] S.Y. Liu, G.C. Liu, Q.G. Feng: J. Porous Mater. Vol 17 (2010), p.197.

Google Scholar

[15] F. K. Shan, G. X. Liu, W. J. Lee, B. C. Shin: J. Crystal Growth. Vol 291 (2006), p.328.

Google Scholar

[16] R. J. Tayade, R. G. Kulkarni, R. V. Jasra: Ind. Eng. Chem. Res. Vol 45 (2006), p.5231.

Google Scholar

[17] K.S.W. Sing, D.H. Everett, R.A.W. Haul: Pure & Appl. Chem. Vol 57(1985), p.603.

Google Scholar

[18] T.Y. Peng, D. Zhao, K. Dai, W. Shi, K. Hirao: J. Phys. Chem. B, Vol 109 (2005), p.4947.

Google Scholar

[19] S. F. Kim, J. C. David , R. B. John, Langmuir, Vol 17(2001), p.816.

Google Scholar

[20] W. Choi, A. Termin, M.R. Hoffmann: J. Phys. Chem. Vol 98 (1994), p.13669.

Google Scholar

[21] H. Joe, A. K. Vasudevan, G. Aruldhas: J. Solid State Chem. Vol 131 (1997), p.181.

Google Scholar

[22] W. Yao, Y. Chen, L. Min, H. Fang: J. Mol. Catal. A: Chem. Vol 246 (2005), p.162.

Google Scholar

[23] B. M. Reddy, P. M. Sreekanth, E. P. Reddy: J. Phys. Chem. B Vol 106 (2002), p.5695.

Google Scholar

[24] I. E. Wachs: Top. Catal. Vol 8 (1999), p.57.

Google Scholar

[25] J. G. Yu, X. J. Zhao, Q. N. Zhao: J. Sol-Gel Sci. Technol. Vol 17 (2000), p.163.

Google Scholar

[26] R. Khan, T. J. Kim: J. Hazardous Mater. Vol 163(2009), p.1179.

Google Scholar

[27] Y. H. Zhang, A. Reller: J. Mater. Chem. Vol 11 (2001), p.2537.

Google Scholar

[28] E. Duprey, P. Beaunier, M.A. Springuel-Huet: J. Catal. Vol 165 (1997), p.22.

Google Scholar

[29] J. Wang, S. Uma, K. J. Klabunde: Appl. Catal. B Environmental Vol 48 (2004), p.151.

Google Scholar

[30] D. Bydoun, R. Amal, G. K. C. Low: J Phys. Chem. B Vol 104 (2000), p.4387.

Google Scholar

[31] Q.C. Zhang, F.B. Zhang, G.L. Zhang: Fine Chemicals (in Chinese) Vol 20 (2003), p.227.

Google Scholar

[32] M.R. Nimlos, E.J. Wolfrum, M.K. Brewer, Environ. Sci. Technol. Vol 30(1996), p.3102.

Google Scholar

[33] H.S. Cai, G. G. Liu, W.Y. Lv: J. Chin. Rare Earth Society Vol 25 (2007), p.16.

Google Scholar

[34] K. Melghit, O. S. A. Shukeili, I. A. Amri: Ceramics International, Vol 35(2009), p.433.

Google Scholar

[35] D. C. Hurum, A. G. Agrios, K. A. Gray: J. Phys. Chem. B Vol 107(2003), p.4545.

Google Scholar

[36] T. Ohno, N. Murakami, T. Tsubota: Appl. Catal. A: General, Vol 349 (2008), p.70.

Google Scholar